

# **Antarctic Impulsive Transient Antenna**

Ryan Nichol The Ohio State University (for the ANITA collaboration)



History, GZK cutoff, & neutrinos

The Askaryan effect

Antarctica

ANITA prototype: ANITA-lite

Plans & prospects

# Science roots: the 60's

1961: First 10<sup>20</sup> eV cosmic ray air shower observed

**1962:** G. Askaryan predicts coherent radio Cherenkov from showers

His applications? Ultra-high energy cosmic rays & neutrinos

K. Greisen (US) & Zatsepin & Kuzmin (Russia), independently

1965: Penzias & Wilson discover the 3K echo of the Big Bang

(while looking for bird dung in their radio antenna)

**1966:** Cosmic ray spectral cutoff at 10<sup>19.5</sup> eV predicted

Cosmic ray spectrum *must end* close to  $\sim 10^{20}$  eV

John Linsley, Volcano Ranch, Utah

Four crucial events from the 1960's









p,  $\gamma + \gamma(3K) \longrightarrow$  pions, e+e-"GZK cutoff" process **GZK** neutrinos

END TO THE COSMIC-RAY SPECTRUM?

Kenneth Greisen

Cornell University, Ithaca, New York (Received 1 April 1966)

3.

#### Ryan Nichol

# (Ultra-)High Energy Physics of Cosmic rays & Neutrinos

- Neither origin nor acceleration mechanism known for cosmic rays above 10<sup>19</sup> eV
- $\oplus$  A paradox:
  - $\Phi$  No <u>nearby</u> sources observed
  - distant sources <u>excluded</u> due to GZK process
- Neutrinos at 10<sup>17-19</sup> eV required by standard-model physics\* through the GZK process--observing them is crucial to resolving the GZK paradox

\* Berezinsky et al. 1971.



**<sup>107</sup> times Tevatron** 

### Neutrinos: The only known messengers at PeV energies and above



- Photons lost above 30 TeV: pair production on IR & μwave background
- Charged particles: scattered by B-fields or GZK process at all energies
- Sources extend to  $10^9$  TeV !
- Study of the highest energy processes and particles throughout the universe *requires* PeV-ZeV neutrino detectors
- To guarantee EeV neutrino detection, design for the GZK neutrino flux

# More Neutrino Propaganda



# **Particle Physics: Energy Frontier &**

### **Neutrinos**

- Well-determined GZK v spectrum becomes a useful beam
  - 10-300 TeV center of momentum particle physics
  - study large extra dimensions at scales beyond reach of LHC

 $\oplus$  v Lorentz factors of  $\gamma = 10^{18-21}!$ 

- Measured flavor ratios  $v_e:v_{\mu}:v_{\tau}$ 
  - identify non-standard physics at source
  - Sensitive to sterile v admixtures & anomalous v decays



Anchordoqui et al. Astro-ph/0307228

### GZK v Particle Astrophysics/Cosmology

 $\oplus$  Cosmic ray  $E_{max}$ , the maximum acceleration energy

- UHECR flux vs. redshift to z = 15-20 (eg. WMAP early bright phase, )
- ✤ Independent sensitivity to dark energy density
- Description Exotic (eg. Top-down) sources; GUT-scale decaying relics

# What is needed for a GZK v detector?

- Standard model GZK  $\nu$  flux: <1 per km<sup>2</sup> per day over  $2\pi$  sr
- Interaction probability per km of water = 0.2%
- Derived rate of order 0.5 event per year per cubic km of water or ice
  → A teraton (1000 km<sup>3</sup> sr) target is required!
- **Problem: how to scale up from current water Cerenkov detectors**

# The Askaryan Effect

 In 1962 Gurgen Askaryan hypothesized coherent radio transmission from high energy showers in dielectric media.

UHE e<sup>-</sup>



- $\oplus$  A negative charge excess (~20%) develops:
  - •Compton scattering:  $\gamma + e^{-}(at rest) \rightarrow \gamma + e^{-}$
  - •Positron Annihilation:  $e^+ + e^-(at rest) \rightarrow \gamma + \gamma$
- $\Phi$  Excess moving v > c/n in matter
  - •Cerenkov Radiation:  $dP \propto v dv$
- If  $\lambda > R \rightarrow$  Coherent emission  $P \sim E_{SH}^{2}$

Shower with macroscopic size:  $R_{Moliere} \approx 10$  cm  $L \sim$  meters

# More on Askaryan Effect



- ✤ Linearly polarized plane wave
- Field strength increases with frequency (Cerenkov) until coherence begins to be lost
  - $\oplus$  In ice the peak frequency occurs at ~ 2 GHz



 $\oplus \cos^{-1}(1/n) = 66^{\circ}$ 

 RF Cerenkov cone: propagates through solid, refracts at interface



#### Ryan Nichol

TBAskaryan Confirmation: SLAC T444 (2000)



• Use 3.6 tons of silica sand, brem photons to avoid any charge entering target

==> avoid RF transition radiation

• RF backgrounds carefully monitored

• but signals were much stronger!



From Saltzberg, Gorham, Walz et al PRL 2001



Ryan Nichol

### Shower profile observed by radio@2GHz



- Measured pulse field strengths follow shower profile very closely
- Charge excess also closely correlated to shower profile (EGS simulation)
- Polarization completely consistent with Cerenkov—can track particle source

Where does Askaryan win?

#### Huge dynamic range

• SNR dominant for E > 10 PeV



# Design for GZK v flux

- Huge Volume of solid medium: Antarctic Ice
- Broadband antennas & low noise amplifiers to watch it
- A very high vantage point, but not too high or too far away
- The end result: ANITA

### **Antarctic Impulsive Transient Antenna**





#### Instantaneous balloon field of view

- UH (P. Gorham, C. Hebert, J. Learned, J. Link, S. Matsuno, P. Miocinovic, M. Rosen, B. Stokes, G. Varner), UCI (S. Barwick, J. Nam), JPL (K. Liewer, C. Naudet), Ohio State U. (J. Beatty, B. Mercurio, R. Nichol, K. Palladino), U. Del. (D. Seckel, J. Clem), UCLA (D. Saltzberg, A. Connolly), U.Minn. (M. DuVernois), Univ. Kansas (D. Besson)



Ryan Nichol

### **ANITA concept**



Ryan Nichol

### Flight Payload Design



 $a_{\text{structure}}^{\text{gg}} = -0.5$ 

0.5

- Quad-ridged horn antennas provide superb impulse response & bandwidth
- Interferometry & beam gradiometry from multiple overlapped antenna measurements

#### Ryan Nichol

# ANITA as a neutrino telescope









- Pulse-phase interferometer (150ps timing) gives intrinsic resolution of <1° elevation by ~1° azimuth for arrival direction of radio pulse</li>
- Neutrino direction constrained to ~<2° in elevation by earth absorption, and by ~3-5° in azimuth by polarization angle

#### Ryan Nichol

Sky Coverage





-

Ryan Nichol

### ANITA as a Calorimeter

 $\oplus$  The observed voltage V<sub>obs</sub> is proportional to the neutrino energy E<sub>v</sub>:

$$V_{obs} \sim E_v y h_{eff} R^{-1} \exp\left(-\frac{\beta^2}{2\sigma_{\beta^2}} - \alpha d\right)$$

y is the fraction of neutrino energy in the cascade  $h_{eff}$  is the effective height of the antenna (gain) R is the range to the cascade Gaussian in  $\beta$  from observer position on Cerenkov cone (estimated from RF spectrum) Exponential is attenuation in ice at depth d. (estimated from RF spectrum and polarization effects)

Gives:  $\Delta E_v / E_v \sim 1.9$  (60% of which is intrinsic from y)

Ryan Nichol

# ANITA-lite Prototype flight.





- Piggyback Mission of Opportunity on the 03-04 TIGER\* flight, completed mid-January 04
- ANITA prototypes & off-the-shelf hardware used
   2 dual-pol. ANITA antennas w/ low-noise amps
- 18.4 days flight time, 40% net livetime due to slow (4sec per event) GPS time readout

| GNT fins:     | 1580- 01 38 01 97 1D                                                                | Trigger contil                                                     | tion               | Frank make four brind                                                      | Ourseast products (MI                                                 | Destroit Ann (n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Transerstore (C |
|---------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Draft Thre:   | NMACI-110201 IN IM                                                                  | lieldoff [o]:                                                      | C.1                | Exercitate featured                                                        | anonen bervere lui                                                    | Latitude table [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100             |
| Event File:   | A 2072015279 566                                                                    | BC### [1]                                                          | ¢                  |                                                                            | 801                                                                   | 新!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16 ·            |
| treat Mamber: | 20154                                                                               | Coupling                                                           | 3C5)               |                                                                            | 100                                                                   | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40+             |
| OPS Time:     | 5 40 00.00.0000000                                                                  | Slape:                                                             | Lug .              |                                                                            | 38                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20              |
| GPS Correct   | 0.33.00                                                                             | Source                                                             | -1                 | -                                                                          |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 3             |
| Orientations  | ) Till: 0                                                                           | Lead (uv);                                                         | -523.9             | Livetime est. [%]                                                          | Gueued events (A)                                                     | Event Age [5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10              |
| last communit | 0.2.8.0.00 107291212472                                                             | Clocktype:                                                         | ieautor            | 91                                                                         | 2281                                                                  | <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10              |
| HEA HIN:      | NR #720150751171                                                                    | IKI Tine 01                                                        | 01 31 00 8: 15.383 |                                                                            | 1500                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| TK2 Fils:     | N22 872025351.955                                                                   | HK2 Time 044                                                       | 01-31-00.81:04283  | 2 I                                                                        | 1886 L                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| HEATIN:       | 18.4_17.2915255                                                                     | IK4Time [01]                                                       | 01 31 00 #1:05     |                                                                            |                                                                       | Property lies and set of the less of the l | Prossure losial |
| S Marine      |                                                                                     | and transve                                                        | handould           | head and the states                                                        | in Marshause                                                          | وخاط المليا وم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14              |
|               | -ar -yr                                                                             | -un<br>Ulterneurd                                                  |                    |                                                                            | مينغدانا عمانيطي                                                      | and directed for an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |
|               | nar nar<br>Frankfrankfrakkel<br>Nar Hannaranne                                      | -to<br>-to<br>-to                                                  | Nurvalby Ak        | hillianathritean<br>Nillitianathritean                                     | n st                                                                  | Norman la chiviptor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Threaticki (mV) |
|               | nte ser<br>pont tomorbilitieren<br>stat stat<br>plant at not formellet<br>stat stat | -10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10<br>-10 | - 10<br>1/         | na sh<br>Hilifacarfiyareiya<br>a sh<br>Hilifacarfiyareiya<br>a sh<br>Na sh | A A<br>(feteronewyt openytion<br>a et<br>conte-pont (on class<br>a et | 100 100 100 100 100 100 100 100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Threakkit (mV)  |

Ð

- "Heartbeat" event rate of several per minute, with~100K events recorded:
  - payload generated EMI + thermal noise + calibration triggers + forced/timeout triggers

\*Trans-Iron Galactic Element Recorder

Ryan Nichol

# **ANITA-lite instrument**



Dual horns into bandpass filters
 & LNAs 200-1100 MHz

- Split signal into trigger path & digitizer path
- Use Circular polarization since radio Cherenkov is pure linear (thus equal LCP & RCP)
- Standard HEP coincidence logic

# **TIGER/ANITA-lite launch**



...& Landing







1.



#### Ryan Nichol

**Still There...** 



### January 2004

### February 2005

# **ANITA-lite sensitivity calibration**





 Ground RF pulser used with GPS synch out to 200-300 km from McMurdo station

- Galactic Center & solar thermal & non-thermal RF emission provided realtime antenna sensitivity, along with onboard noise diodes for gain calibration
- Aperture estimate by Monte-Carlo using ice thickness data & balloon trajectory



# **Simulated Response to Askaryan Pulse**

300

201

100

-200

-300

-4.00

39

40

[quil] A -100





Simulated Askaryan pulses convolved with ANITA-lite instrument response

80

i (tai)

70

Ð

90

50

51 B dep

53 8 den

55 B deg

# **Data Selection**



- Use 2 Mhz wide notch filters to remove narrowband payload noise.
- Analyse trace both with and without a 400 Mhz high pass filter

- Apply a matched filter optimized for response to simulated Askaryan pulses.
- Demand (for each channel)
  - SNR not degraded by matched filter, both with and without the 400 Mhz highpass filter.
  - Peak signal timing insensitive to application of matched filter.
  - For pulses that satisfy these requirements, demand that the peaks
    - $\Phi$  are within 1ns in same antenna
    - within 5.5ns in different antennas.

# **ANITA-lite impulse analysis**



- Dominated by payload local noise
- Circularly polarized impulses (TDRSS relay turn-on?)
- Glitches from balloon support package (charge controller MOSFETS)
- Injected Cherenkov signals (overlain on actual thermal noise) used to test algorithm efficiency
- Accidental rate: 3-fold, 5 sigma:
   Of order 1 per week, but still not phase coherent

# Anita-lite & other limits & projections



- **RICE** limits for 3500 hours livetime in embedded South Pole array
- **GLUE** limits ~120 hours livetime, Lunar regolith observations
- FORTE limits on 3 days of satellite observations of Greenland ice sheet

- ANITA-lite: 18.4 days of data, net 40% livetime with 60% analysis efficiency for detection
- ✤ Ice coverage & average depths included
- No candidates survive impulse cuts in 2 independent analyses
- Z-burst model (vv annihilation --> UHECR) strongly excluded: we expect 20-30 events, see none
- ✤ Large extra dimensions: No limit yet
  - MC modeling is more complicated than expected
- **ANITA projected sensitivity:** 
  - $v_e v_\mu v_\tau$  included, full-mixing assumed
  - 1.5-2.5 orders of magnitude gain!

#### Ryan Nichol

# The Z-burst model

 Original idea, proposed as a method of Big-bang relic neutrino detection via resonant annihilation (T. Weiler PRL 1986):

Φ 10<sup>23</sup> eV v + 1.9K ∇ → Z<sub>0</sub> produces a dip in a cosmic neutrino source spectrum, *IF one has a source of 10<sup>23</sup> eV neutrinos* 

 The Z-burst proposal has the virtue of solving two completely unrelated (and very difficult) problems at once: relic neutrino detection AND super-GZK cosmic rays

### **ANITA & IceCube**



 Different energy regime, very complementary

------

- IceCube designed for TeV to PeV sources, with some reach to EeV energies
- ANITA "turns on" only for EeV-ZeV sources--GZK neutrinos

# For the future: Antarctic station-keeping payload?

- ANITA could greatly improve duty cycle if payload could keep station above <u>east Antarctica</u>
   ~3-4 km ice depth, least anthropogenic activity
- Either tethered airship at ~80Kft (wind minimum) or stationkeeping balloon possible
- With lightweighting of antenna arrays, other possibilities (eg. High altitude UAV aircraft) also possible





America in

- Radio Cherenkov Detection of GZK neutrinos is well on the way toward first 'light' in 2006-2007
- ANITA-lite: a strong proof-of-concept for ANITA, with some physics thrown in as well
- Antarctica is an unmatched resource for physics and astrophysics...