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¢ History, GZK cutoff, & neutrinos

¢ The Askaryan effect
¢ Radio Antarctica

# ANITA prototype: ANITA-lite

¢ Plans & prospects
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fi§ Four crucial events from the 1960’s

— 1961: First 10*° eV cosmic ray air shower observed
— John Linsley, Volcano Ranch, Utah
—  1962: G. Askaryan predicts coherent radio Cherenkov from showers
— His applications? Ultra-high energy cosmic rays & neutrinos
3. 1965: Penzias & Wilson discover the 3K echo of the Big Bang
—  (while looking for bird dung in their radio antenna)
— 1966: Cosmic ray spectral cutoff at 10'°5 eV predicted
— K. Greisen (US) & Zatsepin & Kuzmin (Russia), independently
—  Cosmic ray spectrum must end close to ~10?° eV

p, Y + Y(3K) — pions, e+e- END TO THE COSMIC-RAY SPECTRUM?
“GZK cutoff ” l Kenneth Greisen
process . Cornell University, Ithaca, New York
GZK neutrinos (Received 1 April 1966)
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4 Neither origin nor acceleration Ultra High Energy Cosmic Ray Spectrum, 2005
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€ Photons lost above 30 TeV: pair
production on IR & pwave
background

4 Charged particles: scattered by
B-fields or GZK process at all
energies

Sources extend to 10° TeV !

=> Study of the highest energy
processes and particles
throughout the universe requires
PeV-ZeV neutrino detectors

4 To guarantee EcV neutrino
detection, design for the GZK
neutrino flux

& &
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¥ Well-determined GZK v spectrum i R I i R R R

becomes a useful beam 107 ”
4 10-300 TeV center of momentum 108 c'fr;%iﬁfﬁi ]
particle physics . ;
: : 5 .
4 study large extra dimensions at 210 Y/
scales beyond reach of LHC - 9
10 // .+Std. model
€ v Lorentz factors of y=10'%2!! ; y 2
10 "J =
D7 N
: 2 ]
@ Measured flavor ratios Ve:Vy:Vy 0 T R
4 1dentify non-standard physics at E, (GeV)

Anchordoqui et al. Astro-ph/0307228
source q P

4 Sensitive to sterile Vv admixtures &
anomalous v decays
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¢ Cosmic ray E,,,, the maximum acceleration energy

4 UHECR flux vs. redshift to z=15-20 (eg. WMAP
early bright phase, )

4 Independent sensitivity to dark energy density

4 Exotic (eg. Top-down) sources; GUT-scale decaying
relics

Ryan Nichol Weak Interactions and Neutrinos '05, Delphi, Greece 8



% Standard model GZK V flux: <1 per km? per day over 2Tt sr

4 Interaction probability per km of water = 0.2%

4 Derived rate of order 0.5 event per year per cubic km of water or ice
> A teraton (1000 km?®sr) target is required!

4 Problem: how to scale up from current water Cerenkov detectors
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% In 1962 Gurgen Askaryan hypothesized coherent radio transmission from
high energy showers in dielectric media.

% A negative chargeexcess (~20) develos:
*Compton scattering: vy + e’(at rest) — y+ e
*Positron Annihilation: ¢" + e (at rest) - y+V

4 Excess moving v > ¢/n in matter

*Cerenkov Radiation: dP [1 v dv

¢ If A> R — Coherent emission P ~ E_ 2

Ryan Nichol
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Shower with
macroscopic size:

R ~ 10 cm

L ~ meters

Moliere
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10~ 3
5
% 1077 |
= § . .
= 5 & Ice:n=1.78 in radio,
% 4 cos!(1/n) = 56°
-8 . . .
i & Halite (rock salt): n=2.45 in radio,
5
1 4 cos!(1/n) = 66°
10-9 # RF Cerenkov cone: propagates through
10 solid, refracts at interface
RF
Cherenkov
b : 1 -“'.-"u'(;'("'
4 Linearly polarized plane wave atr e
. . ‘ _ IR
4 Field strength increases with solid 7 7 7 el
frequency (Cerenkov) until
coherence begins to be lost neutrino >v
4 In ice the peak frequency occurs Cascade: ~10m length

at ~2 GHz
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36m |

SIDE VIEW BACKGROUND HUHN%

f SILICA SAMD (3.6 tons)
Dlam Di o
| E.M. SHOWER
T MICROWAVE ABS. —
ELECTRON BEAMPIPE '

TODUMP ~15m

 Use 3.6 tons of silica sand, brem photons to
avoid any charge entering target

==> avoid RF transition radiation
* RF backgrounds carefully monitored

* but signals were much stronger!
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distance along shower axis {cm)
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Sub-ns pulse,
Ep-p~ 200 V/m!

* Measured pulse field strengths follow shower profile very closely
» Charge excess also closely correlated to shower profile (EGS simulation)
 Polarization completely consistent with Cerenkov—can track particle source

— 0° polarization
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4 Huge dynamic range
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¢ Huge Volume of solid medium: Antarctic Ice

¢ Broadband antennas & low noise amplifiers to watch
it

% A very high vantage point, but not too high or too far
away

¢ The end result: ANITA

Ryan Nichol Weak Interactions and Neutrinos '05, Delphi, Greece 15



South
Atlantic Ocean

Weddell

Antarctice 2
Marie B

Pacific Ocean

ANITA
Gondola &
Overall height ~8m Payload

e JO “AluR;

¢ NASA SR&T start in 2003
4 launch in ‘06-07, every two years after

€ UH (P. Gorham, C. Hebert, J. Learned, J. Link, S. Matsuno, P.
Miocinovic, M. Rosen, B. Stokes, G. Varner), UCI (S. Barwick, J.
Nam), JPL (K. Liewer, C. Naudet), Ohio State U. (J. Beatty, B.
Mercurio, R. Nichol, K. Palladino), U. Del. (D. Seckel, J. Clem), UCLA
(D. Saltzberg, A. Connolly), U.Minn. (M. DuVernois), Univ. Kansas

(D. Besson)
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Cutaway View of Ice Sheet
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Indian
Ocean

Instantaneous balloon field of view

~——"" All LDB flights

am— Average
December launches
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balloon at ~37km altitude

cascade produces
UHF—microwave EMP

\

antenna array
?/ on payload

earth

“~

a2t

ice K

cascade;:

-

-

Ice RF
clarity:
~1.2km(!)
attenuation
length
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Cherenkov cone
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2000 —

field attenuation length, m

1500

o
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Tkm
|

~700km to horizon

observed area:
~1.5 M square km

Radio Echo measurements
Amundsen—Scott Station
S. Barwick et al. 2004

I~ Average attenuation to 1200m depth
B mean T=-45C
B Errorbars show ~2 o systematics
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Typical balloon

__ -- field of regard

lee sheet thicknass (m) T

L] 1000 2000 3000 4000

~4km deep ice!

Effective “telescope” aperture:
e ~250km?sr @ 108 eV
e ~10* @ km? sr 10" eV

(compare to ~1 km? at lower E)
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ANITA
directional
PV array

/1)

- sun rotator

SIP omni directional
PV array

two 8 horn

; clusters

charge controller
and batteries

SIP

ANITA electronics

16 horn cluster

(folds in)  janding frame

j—
-t
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~5m

relative amplitude

sl T T~320ps

Measured |

—-10 0 10 20
time, ns

# Quad-ridged horn antennas provide superb
impulse response & bandwidth

# Interferometry & beam gradiometry from
multiple overlapped antenna measurements
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ANITA asa neutrino telesco

e i . S |

290 MHz 435 MHz

650 MHz

90 -45 0 a3 20 -90 —a5 o 45 90
Up-angle 4 degrees, E=3 EeV, smooth surface

& Pulse-phase interferometer (150ps timing) gives intrinsic
resolution of <lI°elevation by ~1°azimuth for arrival
direction of radio pulse

—

& Neutrino direction constrained to ~<2° in elevation by
earth absorption, and by ~3-5° in azimuth by polarization
angle

Ryan Nichol Weak Interactions and Neutrinos '05, Delphi, Greece 19



108
10% E A——A ANITA, dwelltime 25% 3
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4 The observed voltage V. 1s proportional to the neutrino energy E,;:

2
b —ad

Ryan Nichol

~1
VobS~EVyheﬁ,R exp —2%2

v 1s the fraction of neutrino energy in the cascade
h,; 18 the effective height of the antenna (gain)

R is the range to the cascade

Gaussian in 8 from observer position on Cerenkov cone
(estimated from RF spectrum)

Exponential is attenuation in ice at depth d.
(estimated from RF spectrum and polarization effects)

Gives: AEV / Ev ~1.9 (60% of which is intrinsic from y)

Weak Interactions and Neutrinos '05, Delphi, Greece
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4 Piggyback Mission of Opportunity on the 03-04
TIGER* flight, completed mid-January 04

€ ANITA prototypes & off-the-shelf hardware used
¢ 2 dual-pol. ANITA antennas w/ low-noise amps
¢ 4 channels at 1 GHz RF bandwidth, 2 GHz sampling

€ 18.4 days flight time, 40% net livetime due to slow (4sec
per event) GPS time readout

¢ “Heartbeat” event rate of several per minute, with~100K
events recorded:

4 payload generated EMI + thermal noise + calibration
triggers + forced/timeout triggers

*Trans-Iron Galactic Element Recorder
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Coincidence trigger system
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Dual horns into bandpass filters
& LNAs 200-1100 MHz

Split signal into trigger path &
digitizer path

Use Circular polarization since
radio Cherenkov 1s pure linear
(thus equal LCP & RCP)

Standard HEP coincidence
logic
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TIGER/ANITA flight path
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January 2004 February 2005
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ANITA-lite azimuth response
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4 Galactic Center & solar thermal & non-thermal

RF emission provided realtime antenna
sensitivity, along with onboard noise diodes for
gain calibration

o
o
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 /ANITA-lite
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thickness data & balloon trajectory Y I T I A I
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Simulated Askaryan pulses at various  Simulated Askaryan pulses convolved
angles near the Cerenkov cone with ANITA-lite instrument response
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4 Apply a matched filter optimized
for response to simulated Askaryan
pulses.

4 Demand (for each channel)

- 4 SNR not degraded by matched
S filter, both with and without the
400 Mhz highpass filter.

4 Peak signal timing insensitive to
application of matched filter.

T U T T T R U I TR € For pulses that satisfy these
. requirements, demand that the
# Use 2 Mhz wide notch filters to peiks
remove narrowband Payload noise. & are within 1ns in same antenna
& Analyse trace both with and & within 5.5ns in different
without a 400 Mhz high pass filter antennas.
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circular
pulse

n
+ 200
o)
2 .
= of
-200
1
-100
100 100 |
0 1 0 K
-100 4 -t1o0f
injected impulse 3 [ impulse
=200 5sigma ] =200 - Zoam
-100 0 100 -20

time, ns

Dominated by payload local noise

Circularly polarized impulses
(TDRSS relay turn-on?)

Glitches from balloon support
package (charge controller
MOSFETS)

Injected Cherenkov signals
(overlain on actual thermal noise)
used to test algorithm efficiency

Accidental rate: 3-fold, 5 sigma:

€ Of order 1 per week, but still not
phase coherent
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4  ANITA-lite: 18.4 days of data, net 40%

-10 L p;DAI - cc:del;s ' Pllelll g !‘ll‘? i livetime with 60% analysis efficiency for
T o L : oM - detection
L i éwm-meézoos i # Ice coverage & average depths included
& 14 R _' & No candidates survive impulse cuts in 2
3 i ] independent analyses
D -6 [ - 4 Z-burst model (Vv annihilation -->
= : UHECR) strongly excluded: we expect 20-
e —18 - 30 events, see none
~ FoRTE04 ] # Large extra dimensions: No limit yet
g2 N & MC modeling is more complicated than
) i expected
79 1 - ||I.|.
8 10 12 14
logo(energy, GeV) % ANITA projected sensitivity:

® V.V, V;included, full-mixing assumed
4  RICE limits for 3500 hours livetime in embedded South Pole e TR TT ’ g

array = 1.5-2.5 orders of magnitude gain!
GLUE limits ~120 hours livetime, Lunar regolith observations

& &+

FORTE limits on 3 days of satellite observations of Greenland
ice sheet
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4 Original idea, proposed as a method of Big-bang relic neutrino detection
via resonant annihilation (T. Weiler PRL 1986):

102 eVV+19KV —» Z, produces a dip in a cosmic neutrino source
spectrum, IF one has a source of 10%° eV neutrinos

4 More recently: Z, decay into hadron secondaries gives 102" eV protons to
explain any super-GZK particles, again [F there is an appropriate source
of neutrinos at super-mega-GZK energies

4 (Many authors including Weiler have explored this revived version)

4 The Z-burst proposal has the virtue of solving two completely unrelated
(and very difficult) problems at once: relic neutrino detection AND super-
GZK cosmic rays
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A& ANITA . ¢ Different energy regime,
alien ] very complementary
= E
n cascades only 3 '
[ ] 4 IceCube designed for TeV
= v4v tv 3 :
g e’ “p T E to PeV sources, with some
I ?' reach to EeV energies
E € ANITA “turns on” only for
- EeV-ZeV sources--GZK
3 neutrinos
1 ||u,|,|,|| ] |||u1|] ] ||||,u|| 1 |||||,|,|| 1 |||u||| 1 II|||]|I 1 ||||||| 1 ||_|
1014105106 10'7 108 109 1020 102"
neutrino energy, eV
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4 ANITA could greatly improve
duty cycle if payload could keep
station above east Antarctica

4 ~3-4 km 1ce depth, least
anthropogenic activity

4 Either tethered airship at ~80Kft
(wind minimum) or station-
keeping balloon possible

4 With lightweighting of antenna
arrays, other possibilities (eg.
High altitude UAYV aircraft) also
possible
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¢ Radio Cherenkov Detection of GZK neutrinos 1s well on
the way toward first 'light' in 2006-2007

¢ ANITA-Iite: a strong proof-of-concept for ANITA, with
some physics thrown 1n as well

¢ Antarctica 1s an unmatched resource for physics and
astrophysics...
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