Low Energy Neutrino Physics at Reactors

- Kuo-Sheng Neutrino Laboratory & Program
- > Update of Neutrino Magnetic Moment results
- Sensitivities of Magnetic Moment Searches
- Neutrino-Nucleus Coherent Scatterings : Physics & Motivations
- Ultra-Low Energy High-Purity Germanium Detector Prototype
- Status & Plans Henry T. Wong

Academia Sinica @

TEXONO Collaboration

<u>Collaboration</u>: Taiwan (AS, INER, KSNPS, NTU); China (IHEP, CIAE, THU, NJU); Turkey (METU); USA (UMD)

Program: Low Energy Neutrino & Astroparticle Physics

Kuo-Sheng (KS) Reactor Neutrino Laboratory

- ✤ reactor : high flux of low energy electron anti-neutrinos
- \clubsuit oscillation expts. \Rightarrow m_v \neq 0 \Rightarrow anomalous v properties & interactions
- \checkmark v physics full of surprises , need intense v-source
 - Study/constraint new regime wherever experimentally accessible

* explore possible new detection channels

Diversified R&D Projects

Kuo Sheng Reactor Neutrino Laboratory

Front View (cosmic vetos, shieldings, control room)

Configuration: Modest yet Unique

Flexible Design: Allows different detectors conf. for different physics

Other (More Speculative / Fun) Studies :

- production and physics potentials of v_e's at reactors (hep-ex/0502001)
- > looking for neutrino-induced nuclear transitions
- > production of axions at reactor & their searches

..... not discussed here

Improved Magnetic Moment Analysis

simple compact all-solid design : HPGe (mass 1 kg) enclosed by active NaI/CsI anti-Compton, further by passive shieldings & cosmic veto

Selection: single-event after cosmic-veto, anti-Comp., PSD

- TEXONO data (4712/1250 hours ON/OFF) [PRL 90, 2003]
 - background comparable to underground CDM experiment :
 1 day-1keV-1kg-1 (cpd)
 DAQ threshold 5 keV analysis threshold 12 keV

Sensitivity Improvement

Statistically cales as:

$$\mu_{v} \propto \frac{1}{\sqrt{N_{v}}} \left(\frac{B}{mt}\right)^{\frac{1}{4}}$$

N_v: signal events
B: background level
m: target mass
t: measurement time

 $> N_v \propto \phi_v$ (neutrino flux) & related to T-threshold

➤ T-threshold : e.g. N_v increase X~3 from 10 keV to 10 eV in Ge (1/T ⊗ atomic energy level threshold)

:. BIG statistical boost in μ_{ν} comes from enhancement in ϕ_{ν} by, e.g. artificial ν -sources, β -beams etc.

BUT: for systematics control, coupled with

- **\therefore** low threshold to keep $\mu_v >>$ SM rates
- *** maintain low background level**

e.g. As Illustrations.....

MAMONT Project : ³H-source (Russia, USA, Germany)

Conceptual layout of the *v***-e scattering experiment with 40 MCi tritium source** V e TRITIUM SOURCE of 40 MCi activity (4 kg ³H) with flux of 6×10¹⁴ cm⁻²s⁻¹ (!)
 ULTRA-LOW-THRESHOLD DETECTORS E_{th}~10 eV (!):

•SILICON CRYODETECTOR 15×100cc M=3kg, ionization-into-heat conversion effect (CWRU-Stanford-JINR)

•HIGH-PURITY-GERMANIUM DETECTOR 6×150cc, M=4.8kg, internal amplification by avalanche multiplication (ITEP)

SENSITIVITY (95% C.L.): $\mu_{\nu} \rightarrow 2.5 \times 10^{-12} \mu_{B}$

Status : R&D

- > a fundamental neutrino interaction never been experimentallyobserved
- > $\sigma \propto \sim N^2$ applicable at E_v<50 MeV where q²r²<1
- > a sensitive test to Stardard Model
- an important interaction/energy loss channel in astrophysics media
- > a promising new detection channel for neutrinos, without strict lower bound on $E_v \&$ the channel for WIMP direct detection !
- involves new energy range at low energy, many experimental challenges & much room to look for scientific surprises

Expected Interaction Rates at KS @ different Quenching Factors

"Ultra-Low-Energy" HPGe Prototype

- ULEGe developed for soft X-rays detection ; easy & inexpensive & robust operation
- Prototype : mass 5 g ; can be constructed in multi-array form
- threshold <100 eV after modest PSD [lowest achieved for bulk radiation detectors]
- study feasibilities in vN coherent scattering and Dark Matter searches [μ_v search a by-product]

TEXONO ⊕ KIMS @ Y2L

- Install 5 g ULB-ULEGe at Y2L on January 2005
- Study background and feasibility for CDM searches
- may evolve into a full-scale (1 kg) CDM experiment

Yangyang (襄陽) Lab (Y2L)

min. 700 m of rock overburden

Background Measurements & Comparisons

- Similar background at KS & Y2L
- Apparent difference between 5 g & 1 kg due to scaling with surface area instead, reproduced in simulations
- i.e. background can be ~ O(1 cpd) at > 1 keV range for 1 kg ULEGe in compact array form

First-Ever Low Background Data down to 100 eV!

..... detailed analysis & background understand underway

" don't know what to expect I what are expected ."

R&D Program towards Realistic O(1 kg) Size Experiments (both vN & CDM) :

- > measure & study background at sub-keV range at KS & Y2L
- N=4 elements array produced & being studied
- devise calibration scheme at sub-keV range
- measure quenching factor of Ge with neutron beam

- develop advanced PSD techniques to further suppress noise-edge ⇒ reduce threshold
- studying new possibilities with Ge-detector
 - ♦ larger modular mass
 - ♦ segmented Ge
 - ♦ dual readout channels
- by-product : T>500 eV gives µ_v(v_e) → 2 X 10⁻¹¹ µ_B at ~1 cpd background

- Kuo-Sheng Neutrino Lab.:
 - Established & Operational A Modular & Flexible Design
 Physics Data Taking since June 01
 - **X** Unique HPGe Low Energy Data (@ 10 keV threshold)
 - *** Bkg Level ~ Underground CDM Expt.**
- **>** Results on $\mu_{\nu}(\Gamma_{\nu}) \Rightarrow$ Other analyses under way
- ➢ Future goals : get to 100 eV threshold ⇒ observe neutrinonucleus coherent scattering ⊕ perform LE-CDM experiment
 ➢ R&D program pursued :
 - Prototype ULEGe with ~100 eV threshold
 First background measurement in the 100 eV 1 keV region