Summary - Working Group 2 Experimental

Christoph Paus, MIT

Weak Interactions and Neutrinos 2005 June 6-11, 2005

Thank you

Thank you to

- + organizers: for invitation as convener
- + presenters: excellent presentation
- + Working Group 2 *et al.*: stimulating discussions

Appologies

- + cannot show everything here
- + radically cut contents to fit in my 20 minutes

Contents

- + highlights: kaon physics
- + unitarity triangle: status
- + what the future brings

Highlights: Kaon Physics

CP Violation

- + here is where CP violation started in 1964
- + $Re(\epsilon/\epsilon')$ by NA48 and KTeV (reasonably consistent with SM)
- + $K \rightarrow 3\pi$ future experiments

Rare kaon decays

- + observation of $K_S \rightarrow \pi^0 I^+ I^-$
- + is $K_L \rightarrow \pi^0 I^+ I^-$ becoming feasible?
- + clean theory for $K^+ \to \pi^+ v \overline{v}$ and $K_L \to \pi^0 v \overline{v}$

Data	Bgd	observed	BR (vector matrix element, no form factor)
$\mathbf{K}^0_S \to \pi^0 e^+ e^-$	$0.15\substack{+0.10\\-0.04}$	7	$5.8^{+2.8}_{-2.3}(stat) \pm 0.8(syst) \times 10^{-9}$
${ m K}^0_S ightarrow \pi^0 \mu^+ \mu^-$	$0.22\substack{+0.18\\-0.11}$	6	$2.9^{+1.5}_{-1.2}(stat) \pm 0.2(syst) \times 10^{-9}$

Improved Measurement of the $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Branching Ratio

E949 2002 dataset (\sim 30% of E787), PRL 93 (2004) 031801

- π^+ Range vs Energy
- E949-2002 E787 MonteCarlo
- background: 0.30±0.03 events
 - "Blind" analysis
 - Likelihood analysis to the candidate events
- B.R. = $(1.47^{+1.30}_{-0.89}) \times 10^{-10}$ in 68%C.L. intervals

•
$$P_b = 0.1\%$$

Standard Model (*Buras*): $\operatorname{Im} \lambda_{r} = \operatorname{Im} V_{ts}^{*} V_{td} = \eta A^{2} \lambda^{5}$ $B(K_{L}^{0} \to \pi^{0} \nu \overline{\nu}) = 1.8 x 10^{-10} \left(\frac{\operatorname{Im} \lambda_{r}}{\lambda^{5}} X(x_{r}) \right)^{2}$ $\sim 4.1 x 10^{-10} A^{4} \eta^{2} = 3.0 \pm 0.6 x 10^{-11}$ $B(K^{+} \to \pi^{+} \nu \overline{\nu}) \sim 1.0 x 10^{-10} A^{4} \left[\eta^{2} + (\rho_{0} - \rho)^{2} \right] = 7.8 \pm 1.2 x 10^{-11}$

> Errors from CKM parameter uncertainties Intrinsic errors ~7% for K+, ~2% for K_L

Highlights: Unitarity Triangle, CKM Motivation

- + measure unitarity triangle in many ways
- + find inconsistency \equiv new physics

Angles

+ β , α and γ Matrix elements (Sides)

- + V_{ub}
- + V_{td}/V_{ts}

Summary of results

- Mixing phase $\Phi_{M} = 2\beta$
- Penguin/Tree ~ $A|\lambda|^2 \Rightarrow$ small hadronic uncertainties
- Definite CP content: $CP(J/\psi K_{S(L)})=+(-)1$

A 3body mode: $B^0 \rightarrow K_s K_s K_s$

- Again Beam Spot Constrained vertexing
- If one $\rm K_s$ decays outside the "good-vertexing" fiducial region, most likely 1 or 2 of the other $\rm K_s$ decay within

$cos2\beta$ from $B^0 \rightarrow ccK^{*0}$: result

	BELLE	BABAR	AVERAGE (HFAG) Care !
# Events	354	104	
$\sin(2\beta/2\phi_1)$	0.30 ± 0.32 ± 0.02	0.10 ± 0.57 ± 0.14	0.21±0.28 (CL=0.55, 0.6o)
$\cos(2\beta/2\phi_1)$	+0.31 ± 0.91 ± 0.11	$+3.32^{+0.76}_{-0.96} \pm 0.27$	1.60±0.67 (CL=0.026, 2.2o)
$\sin(2\beta/2\phi_1)$	0.731 (WA)	0.731(WA)	
$\cos(2\beta/2\phi_1)$	€0.31 ± 0.86 ± 0.11	€2.72 ^{+0.50} -0.79 ± 0.27	

CP violation in the interference between mixing and decay

 For a CP final state f_{CP}, time-dependent asymmetry is:

CP violation in $B^0 \rightarrow \rho^+ \rho^-$

Access to α from the interference of a b→u decay
 (γ) with B⁰B⁰ mixing (β).

Isospin analysis

Use SU(2) to relate amplitudes of all ρρ modes.

Result with $B \rightarrow \pi^+ \pi^- \pi^0$

Combined a measurement

- The best individual measurement comes from ρρ.
- Mirror solution are disfavored, thanks to ^d/₂
 ρπ.
- Good agreement with global CKM fit.
- Combined value:

CPV parameters in $B^0 \rightarrow \pi^+ \pi^-$

Constraints on $\phi_2(\alpha)$ from isospin analysis

Fit Projections

B→hh' results BR and Acp

Analyzed Luminosity =180 pb⁻¹

The Gronau-Wyler-London Method (GLW)

 $B^{\pm} \rightarrow D_{CP} K^{(^{\ast}) \pm}$, D_{CP} is CP-eigenstate

[Phys. Lett. B 253 (1991) 483] [Phys. Lett. B 265 (1991) 172]

 $CP+: D^0 \rightarrow \pi^+\pi^\text{-}, \ K^+K^\text{-} \quad CP-: D^0 \rightarrow K_S\pi^0, K_S\eta, \ K_S\omega, \ K_S\phi \ , \ldots$

4 observables (3 independent)

$$A_{CP\pm} \equiv \frac{\Gamma(B^{-} \rightarrow D_{CP\pm}^{0}K^{-}) - \Gamma(B^{+} \rightarrow D_{CP\pm}^{0}K^{+})}{\Gamma(B^{-} \rightarrow D_{CP\pm}^{0}K^{-}) + \Gamma(B^{+} \rightarrow D_{CP\pm}^{0}K^{+})}$$

$$R_{CP\pm} \equiv \frac{\Gamma(B^{-} \rightarrow D_{CP\pm}^{0}K^{-}) + \Gamma(B^{+} \rightarrow D_{CP\pm}^{0}K^{+})}{2\Gamma(B^{-} \rightarrow D^{0}K^{-})}$$

$$= 1 \pm 2r_{B} \cos\gamma \cos \delta_{B} + r_{B}^{2}$$

$$Br(B \rightarrow DK) \sim 10^{-4} \otimes Br(D \rightarrow f_{CP}) \sim 10^{-2}$$

$$r_{B} \sim 0.1$$

$$statistically limited$$

J

Constraints on $\phi_3(\gamma)$ from B \rightarrow DK

Semileptonic B Decays

- Semileptonic B decays provide best way to measure |V_{cb}| and |V_{ub}|
 - Hadronic and leptonic currents factorize
 - Hadronic matrix element needs to be corrected for interactions within B meson

- Theoretical framework: Heavy Quark Expansion
 - Provides method to separate perturbative from non-perturbative scales
 - Expansion of M_{had} in powers of $1/(m_b m_c)$ in terms of local operators
 - Non-perturbative physics enters through matrix elements of local operators
 - Perturbative effects enter through coefficients of operators

Combined Fit to E_e and M_x Moments

PRL 93:011803

- 8 fit parameters: $|V_{cb}|$, $Br(B \rightarrow X_c l \nu)$, m_b , m_c , μ_{π}^2 , μ_G^2 , ρ_D^3 , ρ_{LS}^3
- 27 measured moments used: 0th-3th E_e moments, 1th-4th M_x moments (highly corr.)

Combined Fit: Results

PRL 93:011803

2% uncertainty

$$|V_{cb}| = (41.390 \pm 0.437_{exp} \pm 0.398_{HQE} \pm 0.150_{\alpha_s} \pm 0.620_{\Gamma}) \cdot 10^{-3}$$

$$BR_{cl\nu} = (10.611 \pm 0.163_{exp} \pm 0.063_{HQE} \pm 0.000_{\alpha_s})\%$$
additional 1.5%

$$m_b = (4.611 \pm 0.052_{exp} \pm 0.041_{HQE} \pm 0.015_{\alpha_s})GeV/c^2$$

$$m_c = (1.175 \pm 0.072_{exp} \pm 0.056_{HQE} \pm 0.015_{\alpha_s})GeV/c^2$$

$$u = 1GeV$$

- HQE predictions agree very well with measurements
- Separate fits to E₁ and M_x moments are in good agreement
- Fit results compatible with external knowledge from B-B* mass splitting (μ_G²) and heavy-quark sum rules (ρ_{LS}³)

Inclusive V_{ub} with Full Reconstruction

Vub Extraction with the "New" Vub Method

$$|V_{ub}| = \sqrt{\frac{\Delta \mathcal{B}(B \to X_u \ell \nu)}{\mathcal{R} \cdot \tau_B}}$$

- Dirctly relate V_{ub} and $\Delta \mathcal{B}$ by \mathcal{R}
- Shape Function
 - similar contribution to $b \rightarrow s\gamma$ events
 - fitting γ spectrum by Belle measurement
 - $m_{\rm b} = (4.52 \pm 0.07) \, \text{GeV}, \, \mu_{\pi}^2 = (0.27 \pm 0.13) \, \text{GeV}^2$
- Weak annihilation effect

	V_{ub}	stat	syst	b→u	b→c	SF	theo.
$m_{\chi}-q^2$	4.93×10 ⁻³	5.0	4.4	3.1	2.7	9.3	+5.0
mx	4.35×10 ⁻³	4.6	3.5	3.1	1.1	9.2	+3.6
P ₊	4.56×10 ⁻³	4.7	4.6	3.2	4.4	10.2	+3.4

Summary of BABAR |V_{ub}| Measurements

Using $m_b = 4.63 \pm 0.08 \text{GeV}$ and $\mu_{\pi}^2(\text{SF}) = 0.15 \pm 0.07 \text{GeV}^2$ (correlation: -0.4)						
errors:		expt ± SF ± theory	expt ± (SF + theory)			
Method	∆Br x 10-4	Vub 10^{-3} (BLNP) (SF params from b \rightarrow clv)	Vub 10^{-3} (ICHEP) (DFN, BELLE b \rightarrow sy)			
Endpoint	5.31 ± 0.59	3.93 ± 0.34 ± 0.38 ± 0.18 (8.7 ± 9.7 ± 4.6)%	4.40 ± 0.24 ± 0.35 (± 6.4 ± 8.6)%			
q ² -E ₁	4.46 ± 0.93	$3.89 \pm 0.40 \pm 0.45 \pm 0.21$ (10.3 ± 11.5 ± 5.4)%	4.99 ± 0.48 ± 0.29 (± 9.6 ± 5.8)%			
q²-M _x	8.96 ± 2.04	$4.45 \pm 0.49 \pm 0.40 \pm 0.22$ (11.1 ± 9.0 ± 4.9)%	5.18 ± 0.57 ± 0.34 (± 11.0 ± 6.5)%			
Average		4.07 ± 0.51 (± 12.5)%	4.61 ± 0.46 (± 10.0)%			
significant change in inclusive V _{ub} value						

Exclusive B→X_.Iv Decays: Summary

Belle |Vub| Mesurement Summary

Unitarity Triangle - Who Measures What?

Appex $(\bar{\rho}, \bar{\eta})$ Squeezing along side *b*

+ $\sin 2\beta$

+ V_{ub}/V_{cb}

Squeezing along side *c*

+ Δm_d

+ Δm_s

CKM fit result: $\Delta m_s = 17.8 + 6.7 \text{ ps}^{-1}$

Why is that so difficult?

The larger Δm_S the more crucial $\sigma(ct)$

significance =
$$\sqrt{\frac{S \varepsilon D^2}{2}} \sqrt{\frac{S}{S+B}} \exp(-\frac{(\Delta m_S \sigma_{ct})^2}{2})$$

 $\sigma(ct) = \sqrt{(\sigma_{ct}^0)^2 + (ct \frac{\sigma_p}{p})^2}$

Imperial College London

sensitivity: 7.4 ps⁻¹

lower limit: 7.7 ps⁻¹ at 95% CL

Hadronic and Combined Result

Comments

- + hadronic sample alone has no sensitive (statistics)
- + but helps semileptonic sample in high Δm_s region
- + sensitivity moves from 7.4 ps⁻¹ to 8.4 ps⁻¹
- + new limit $\Delta m_s < 7.9 \text{ ps}^{-1}$ at 95% confidence level

CDF II and World Combined Average

+ limit stays the same

Phi

+ sensitivity moves from 18.1 ps^{-1} to 18.6 ps^{-1}

Summary WG2, Ch.Paus, Weak Interactions and Neutrinos 2005, 40

Tevatron Summary for Run II

 $B_s \rightarrow J/\psi \phi$, Pseudoscalar \rightarrow Vector Vector decay

Both CP-even and CP-odd present, but well separated in transversity

Transversity angle: $cos(\theta)$

- Measure two distinct lifetimes (equivalently: $\Delta\Gamma/\Gamma$ and τ) by fitting time evolution and transversity distr. In untagged $B_s \rightarrow J/\psi \phi$ decays.
- If CP is conserved, they can be interpreted as the lifetimes of the two B_s mass eigenstates.

$\Delta\Gamma/\Gamma$: Results

Imperial College London

- Consistent with $\Delta\Gamma/\Gamma$ CDF result
- Agrees well with theoretical prediction 0.12 ± 0.05
- The WA flavor specific lifetime provides independent relation of $\Delta\Gamma$ and Γ

$$\Gamma_{fs} = \overline{\Gamma} \left(\frac{1 - \left(\Delta \Gamma / 2 \overline{\Gamma} \right)^2}{1 + \left(\Delta \Gamma / 2 \overline{\Gamma} \right)^2} \right)$$
$$\overline{\tau}_{fs} = 1.43 \pm 0.05 \, ps$$
$$\Rightarrow \frac{\Delta \Gamma}{\Gamma} = 0.23^{+0.16}_{-0.17}$$

=>significant improvement to $\Delta\Gamma$

Highlights: Rare Decays

Motivation

- + measure rare decays well predicted in SM
- + find large rate \equiv new physics

Opportunities

- + leptons reduce hadronic uncertainties
- + leptons often offer low rates

Examples

- + $b \rightarrow (s, d)\gamma$
- + $B \rightarrow \mu \mu$
- + $B \rightarrow \tau v$

Inclusive b -> $X_s \gamma$

- Select photons with $E_{\gamma}^* > 1.5 \text{ GeV}$ (analysis done with $E_{\gamma}^* > 1.8 \text{ GeV}$)
- \succ Veto photons from π^0 and η decays
- Subtract background

 $\langle E_{\gamma} \rangle = 2.289 \pm 0.026 \pm 0.034 \, GeV$ $\langle E_{\gamma}^2 \rangle - \langle E_{\gamma} \rangle^2 = 0.0311 \pm 0.0073 \pm 0.0063 \, GeV^2$

Smeared by motion of b quark inside the B meson and gluon emission => dynamics of B meson

important for V_{ub} measurement from inclusive charmless semileptonic decays [B18,B19]

Use $K^{0}{}_{S}\pi^{0}\gamma$ final state for time-dependent CP analysi:

$$\mathbf{A}_{CP} = \frac{\Gamma\left(\mathbf{B}^{0}(\mathbf{t}) \to \mathbf{K}_{\mathrm{S}}^{0} \pi_{0} \gamma\right) - \Gamma\left(\overline{\mathbf{B}^{0}}(\mathbf{t}) \to \mathbf{K}_{\mathrm{S}}^{0} \pi^{0} \gamma\right)}{\Gamma\left(\mathbf{B}^{0}(\mathbf{t}) \to \mathbf{K}_{\mathrm{S}}^{0} \pi_{0} \gamma\right) + \Gamma\left(\overline{\mathbf{B}^{0}}(\mathbf{t}) \to \mathbf{K}_{\mathrm{S}}^{0} \pi^{0} \gamma\right)} = \mathbf{S} \cdot \sin \Delta \mathbf{m} \Delta \mathbf{t} + \mathbf{A} \cdot \cos \Delta \mathbf{m} \Delta \mathbf{t}$$

SM <0.1 S(K_S⁰ $\pi^{0}\gamma$) = -0.58^{+0.46}_{-0.38} ± 0.11

$$A(K_{s}^{0}\pi^{0}\gamma) = +0.03 \pm 0.34 \pm 0.11$$

SM <0.01

Atwood et al [T5] Gronau et al [T6]

Based on 253 fb⁻¹

 $\mathcal{BR}((\rho,\omega)\gamma) = (0.72^{+0.43}_{-0.39} \pm 0.28) \cdot 10^{-6}$ Significance: 1.25

SM predictions:

Ali-Parkhomenko[T2]: $BR(B^+ \rightarrow \rho^+\gamma) = (0.90 \pm 0.34) \cdot 10^{-6}$ Bosch-Buchalla[T3]: $BR(B^+ \rightarrow \rho^+\gamma) = (1.50 \pm 0.50) \cdot 10^{-6}$

Constraint on V_{td} : $\frac{\mathcal{BR}(B \to (\rho, \omega)\gamma)}{\mathcal{BR}(B \to K^*\gamma)} = \left| \frac{V_{td}}{V_{ts}} \right|^2 \frac{(1 - m_{(\rho, \omega)}^2 / m_B^2)^3}{(1 - m_{K^2}^2 / m_B^2)^3} \varsigma^2 (1 + \Delta R)$ $\frac{\left| \frac{V_{td}}{V_{ts}} \right| < 0.22 \quad @ 90\% CL$

Based on 253 fb⁻¹

- Many neutral exclusive
 b -> s γ modes for
 time-dependent CPV!
- Kππ⁰γ final state should help for photon polarization
- useful to reduce inclusive
 b -> s γ systematic errors
- isospin in B and K^(*)
 decays is assumed

Purely leptonic B decay

90%

1 = e

- purely leptonic **B**->l⁺ l⁻ decay is a flavor changing neutral current (FCNC)
- in SM forbidden at tree level ٠
- proceeds thru penguin/box diagrams, ٠ helicity suppressed
- SM: BR(B_->µ+µ-)~ 3.4×10-9 ٠
- depends only on one SM operator in ٠ effective Hamiltonian, hadronic uncertainties small
- B_d relative to B_s suppressed by $|V_{td}/V_{ts}|^2 \sim 0.04$ if no additional sources of flavor • violation

 7.4×10^{-7}

SM expectations:

	$Br(B_d \rightarrow f f)$	$Br(B_s \rightarrow f f)$
1=e	3.4 × 10 ⁻¹⁵	8.0 × 10 ⁻¹⁴
<i>Ι=μ</i>	1.0 × 10 ⁻¹⁰	3.4 × 10-9

 3.1×10^{-8}

< 6.1 ·10⁻⁸

/=μ	< 8.3 ·10 ⁻⁸	< 4.1·10 ⁻⁷
l=T	< 2.5%	< 5.0%

< 5.4 ·10-5

|=τ

Unblinding the signal region

entries / 20 MeV/c² 336 pb⁻¹ **CDF** Preliminary CMU-CMX $B_{s(d)} \rightarrow \mu^{+}\mu^{-}$ 2 sideband sideband 5.4 5.8 4.8 5 5.2 5.6 M_{uu} / GeV/c² entries / 20 MeV/c² 364 pb⁻¹ **CDF** Preliminary $B_{s(d)} \rightarrow \mu^+ \mu^-$ CMU-CMU ch window 2 sideband sideband 5.2 5.8 4.8 5 5.4 5.6 M_{uu} / GeV/c²

CDF:

٠

- central/central: observe 0, expect 0.81 ± 0.12
- Central/forward: observe 0, expect
 0.66 ± 0.13

DØ:

- PRL: observe 4, expect 3.7 ± 1.1
- update: observe 4, expect 4.3 ± 1.2

The Limits

- $BR(B_s \rightarrow \mu^+\mu^-) = N_{ul}/N_{B_+} \times \varepsilon_{B_+}/\varepsilon_{B_s} \times f_u/f_s \times BR(B^+ \rightarrow J/\psi K^+) \cdot BR(J/\psi \rightarrow \mu^+\mu^-)$
 - ϵ_{B} + $/\epsilon_{Bs}$ relative efficiencies
 - f_u/f_s fragmentation ratio (in case of B_s limit) use world average value with 15% uncertainty
- N.B.:
 - DØ mass resolution is not sufficient to separate B_s from B_d. Assume no B_d contribution (conservative)
 - CDF sets limit on B_s & B_d channels
 - all limits below are 95% C.L. Bayesian incl. sys. error, DØ also quotes FC limit

CDF B _s ->µµ	176 pb-1	7.5×10-7	Published	
DØ Β_s-> μμ	240 pb-1	5.1×10 ⁻⁷	Published	
DØ Β_s-> μμ	300 pb-1	4.0×10-7	Prelim.	B _d limit x2 better than published Babar
CDF B _s ->µµ	364 pb-1	2.0×10-7	Prelim	limit w/ 111 fb-1
CDF B_d -> $\mu\mu$	364 pb-1	4.9×10-8	Prelim	*

Sensitivity analysis $B_{s} \rightarrow \mu^{+}\mu^{-}\phi$

- long-term goal: investigate b -> s l+ l- FCNC transition in B_s meson
- exclusive decay: B_s -> μ⁺μ⁻φ
- SM prediction:
 - short distance BR: ~2×10⁻⁶
 - about 30% uncertainty due to B->
 form factor
- 2HDM: enhancement possible, depending on parameters for tanβ and M_{H+}
- presently only one limit
 - CDF Run I: 6.7×10⁻⁵ @ 95% C.L.

Expected Limit

- expected background from sidebands: 5.1 ± 1.0 events
- sensitivity/average expected limit (@95% C.L):

<BR(B_s -> $\phi \mu^+\mu^-$)/BR(B_s -> J/ $\psi \phi$)> = 1.3 × 10⁻²

if BR(B_s-> $J/\psi \phi$) = 9.3×10⁻⁴ PDG2004 is used:

<BR(B_s -> $\phi \mu^+\mu^-$)> = 1.2×10⁻⁵

expect x5 improvement w.r.t previous limit

Search for $B^+ \rightarrow \tau^+ \nu$

• $B^+ \rightarrow \tau^+ \nu$ in the SM

- Via quark annihilation into a W⁺ boson
- Decay with µ or e are helicitysuppressed
- New physics in $B^+ \rightarrow \tau^+ \nu$
 - Charged Higgs boson (H[±]) as propagator
 - SUSY, two-Higgs doublet models
 - Enhancement of the BF
 - Up to a factor of 5

Hou, Phys. Rev. D 48, 2342 (1993)

 Experimentally challenging due to neutrinos in the final state

- Measurement of f_B
 - Assuming $|V_{ub}|$ known from semileptonic decays

• Measurement of
$$|V_{ub}| / |V_{td}|$$

- From BF(
$$B^+ \rightarrow \tau^+ \nu$$
) / $\Delta m^{(*)}$

 Gives a constraint on the CKM unitarity triangle

(*) Δm = mass difference between the heavy and light states of the neutral *B*

Search for $B^+ \rightarrow \tau^+ \nu$

- Analysis strategy
 - Exclusive reconstruction of one *B* in a certain final state ("tag *B*")
 - Semileptonic mode B⁻ → D^{*0} l⁻
 ν (l = e, μ)
 - $D^{*0} \rightarrow D^0 \pi^0$, $D^0 \gamma$
 - $D^0 \to K^-\pi^+, K^-\pi^+\pi^+\pi^-, K^-\pi^+\pi^0, K_s\pi^+\pi^-$
 - $K_s \rightarrow \pi^+\pi^-$
 - Search for a $B^+ \rightarrow \tau^+ \nu$ signal in the rest of the event
 - $\tau^+ \rightarrow e^+ \nu \nu, \mu^+ \nu \nu, \pi^+ \nu, \pi^+ \pi^0 \nu, \pi^+ \pi^- \pi^+ \nu$

- Main background
 - From *B* decays (hadronic or semileptonic)
 - · Correctly tagged events
 - but some decay products on the signal side escaped tracking or calorimetry

Analysis based on 211 fb⁻¹

20

Search for $B^+ \rightarrow \tau^+ \nu$: preliminary results

- No evidence for signal
 - An upper limit is set
 - Method based on a likelihood ratio estimator $Q = \mathcal{L}(s+b) / \mathcal{L}(b)$
 - A.L.Read, J.Phys. G 28, 2693 (2002)
 - Combined with a previous BaBar result
 - Hadronic tag, 81.9 fb⁻¹
 - $BF(B^+ \rightarrow \tau^+ \nu) < 4.2 \times 10^{-4}$

Preliminary,	Preliminary, semileptonic tag			
Expected background	130.8 ± 9.3			
Observed events	150 ± 12			
$BF(B^+ \to \tau^+ \nu) < 2.8 \times$	10-4 @ 90%	C.L.		

Bs and Ab Decays

Bs Decays:

• 3BR, 1 BR upper limit, 1 new semileptonic decay mode observed $\frac{f_d \mathcal{B}(B_s^0 \to D_s^- \pi^+)}{f_s \mathcal{B}(B^0 \to D^- \pi^+)} = 0.35 \pm 0.05(stat.) \pm 0.04(syst.) \pm 0.09(BR)$ $\mathcal{B}(B_s^0 \to \phi\phi) = (1.4 \pm 0.6(stat.) \pm 0.2(syst.) \pm 0.5(BR)) \times 10^{-5}$ $\frac{\mathcal{B}(B_s^0 \to \psi(2S)\phi)}{\mathcal{B}(B_s^0 \to J/\psi\phi)} = 0.52 \pm 0.13(stat) \pm 0.04(syst) \pm 0.06(BR)$ $\mathcal{B}(B_s^0 \to \mu^+\mu^-) < 2.0 \times 10^{-7}(95\% \text{ CL})$

Lambda_b Decays:

- Excl. Semileptonic BR, 1 BR upper limit, 4 new decay modes observed $\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu}_{\mu})}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-)} = 20.0 \pm 3.0(stat.) \pm 1.2(syst.)^{+0.7}_{-2.1}(BR) \pm 0.5(UBR)$ $\mathcal{B}(\Lambda_b^0 \to h^+ h^-) < 2.2 \times 10^{-5} (90\% \text{ C.L.})$
- CP and weak physics from baryons promising...

Double charmonium @ Belle

As for BaBar no evidence of J/ψ , χ_{c1} , χ_{c2} , $\psi(2S)$.

Pliī

Charmonium production rate comparable to BaBar results

N/20 MeV/c² 22 NeV/c² $\eta_c(2S) \, \, {
m X(3940)}$ Evidence for X(3940) in $287 \ fb^{-1}$ double charmonium η_c production Xco M(X(3940))=3940±12 MeV 50 Γ(X(3940))<96MeV 25 @ 90%CL 0 Decays into DD and 3.5 3 4.5 2.5 DD* GeV/c² Recoil Mass(J/ψ)

hep-ex/0412041

motivation

- B→Kππ, KKK dominated by
 b→s penguin process
- Full amplitude Dalitz analysis allows to reliably measure quasi-two-body branching fractions (B→ρK, K*π...)
- Search for direct CP violation
 - Looking for:
 - asymmetry in quasi two body Branching Ratios
 - Differences in relative phases

 $B^+ \rightarrow K^+ \pi^+ \pi^-, K^+ K^+ K^-$

- Fit the B⁺ and B⁻ samples individually to determine CP asymmetry for each quasi-two-body channel
- Model related uncertanity evaluated by repeating fit with different models

B**→**φK*

motivation

Standard Model prediction, with factorization assumption:

$$f_{L} = \frac{\left|A_{0}\right|^{2}}{\left|A_{0}\right|^{2} + \left|A_{J}\right|^{2} + \left|A_{L}\right|^{2}} = \frac{\left|A_{0}\right|^{2}}{\left|A_{0}\right|^{2} + \left|A_{+}\right|^{2} + \left|A_{-}\right|^{2}} = 1 - O\left(\left(\frac{m_{\nu}}{m_{B}}\right)^{2}\right) \sim 1$$

True for tree dominated decays

BaBar(89M)	$f_{\rm L}(\rho^+\rho^-) = 0.99 \pm 0.03^{+0.04}_{-0.03}$
BaBar(89M)	$f_{\rm L}(\rho^+\rho^0) = 0.97^{+0.03}_{-0.07} \pm 0.04$
Belle(85M)	$f_{\rm L}(\rho^+\rho^0) = 0.95 \pm 0.11 \pm 0.02$
BaBar(89M)	$f_{\rm L}(\rho^+\omega) = 0.88^{+0.12}_{-0.15} \pm 0.03$

Not true in pure penguins

BaBar(227M)	f_(φK*0) =	0.52	± 0.05 ± 0.02
Belle(152M)	$f_{L}(\phi K^{*0}) =$	0.52	± 0.07 ± 0.05
BaBar(89M)	$f_{L}(\phi K^{*+}) =$	0.46	± 0.12 ± 0.03
Belle(152M)	$f_{L}(\phi K^{+}) =$	0.49	± 0.13 ± 0.05

Many possible explanations:

- New Physics
- Transverse gluon
- Annihilation
- Rescattering

Y. Grossman, hep-ph/0310229 W.-S. Hou *et al.*,hep-ph/0408007 A. Kagan, hep-ph/0405134 P. Colangelo *et al.*, hep-ph/0406162

15

results

CKM Unitarity Triangle

Present

Super B Factory

- Sensitive test of new physics
- Can determine sign of C7
- Can measure C9 and C10

Δm_s from $B_s \rightarrow D_s^{\pm} \pi^{\mp}$

with
$$B_s \to D_s^{\pm} \pi^{\mp}$$
, $D_s^{\pm} \to \phi \pi^{\pm}$ and $\phi \to K^+ K^-$

- 80K events/year
- S/B ≈ 3.1
- 5 σ observation possible up to $\Delta m_s = 68 \text{ ps}^{-1}$
- Once measured: $\sigma(\Delta m_s) = 0.01 \text{ ps}^{-1}$.

CLEOC: Precise f_D and Br(D, D_s)

Tevatron: Charm Rare Decay/CP Starting

BaBelle: What about *τ* Decays?

Organizers: EDM Part of WG2?

News on PentaQuarks: RIP
Conclusions

Rich variety of existing results

- + kaon CP violation mostly complete
- + exciting rare decays $K_L \rightarrow \pi^0 v \bar{v}$
- + incredibly rich program from BaBelle and Tevatron
- + taunting "discrepancies"
 - + $\sin 2\beta (J/\psi K_S) \leftrightarrow \sin 2\beta (\phi K_S)$
 - $2-3.7\sigma$ depends on faith in theory
- + measurements for all angles!!
- + B_s mixing analysis took first step at Tevatron
- + overall SM has survived well

Bright outlook for the future

+ LHCb and SuperB will take over coherently in 2007/8