Another Route to CP Violation Beyond the SM – Particle Dipole Moments

Dave Wark Imperial/RAL

WIN05 Delphi June 10, 2005

r<mark>ial Colleg</mark>e on

Particle Electric Dipole Moment

NNF

June 10

'05

Would lead to a non-zero value for \vec{d}_n , either parallel or anti-parallel to \vec{s} \vec{d}_n would be: P odd T odd CP odd!

Wark

ave

Imperial College/RAL

If neutron were the size of the earth...

WIN05

June 10

'05

Look for a shift in the Larmor frequency of $2 \cdot E \cdot d_n$ as E is flipped relative to B

The Ramsey Separated Oscillator Method

WNOF

June 10

'05

1.

"Spin up" neutron...

·····

.....

2.

Apply π/2 spin flip pulse...

3.

Free precession

• • •

Second π/2 spin flip pulse.

Ramsey Resonance Curve

WIN05

June <u>10</u>

Imperial College/RAL

WINO June 10 '05 λ >> interatomic spacing; neutrons see Fermi potential V_F Critical velocity for reflection: $1/2mv_c^2 = V_F$

Ultracold neutrons (UCN): $v \sim 6$ m/s: total internal reflection possible.

 v_c depends on orientation of neutron spin, so can polarise by transmission.

June 10 '05

Prepare neutrons in polarisation state 1, execute Ramsey cycle and measure the number left in states 1 and 2, repeat with B and E fields parallel ($\uparrow\uparrow$) and anti-parallel ($\uparrow\downarrow$), then:

$$d_{n} = \frac{(N_{1\uparrow\uparrow} - N_{2\uparrow\uparrow} - N_{1\uparrow\downarrow} + N_{2\uparrow\downarrow})\hbar}{2\alpha ETN}$$

With the resulting "statistical" sensitivity:

$$\sigma(d_n) = \frac{\hbar}{2\alpha ET\sqrt{N}}$$

Must add any systematics to this to determine the sensitivity of the experiment.

Current Room-Temperature nEDM Experiment

WIN05

June 10

'05

Dave Wark Imperial College/RAL

-and Cp

1999 Results (PG Harris *et al*, PRL **82**, 904 (1999))

June 10

'05

Neutron EDM Results

Recall: $\sigma(d_n) = \frac{\hbar}{2\alpha ET\sqrt{N}}$

WIN05

June 10

'05

IIFINA

	Published Data	Current Room-Temp	Cryogenic Experiment
α	0.5	0.7	
E	4.5 kV/cm	12 kV/cm	
Т	130 s	130 s	
N	13000	14000	

WIN05 June 10 How will we do better?

• Need a new source of UCN....

• To use this we need....

WIN05

June 10

Ramsey Cell and SF Vessel

WIN05

June 10

'05

IFIN

Dave Wark Imperial College/RAL

Recall: $\sigma(d_n) = \frac{\hbar}{2\alpha ET\sqrt{N}}$

WIN05

June 10

'05

IIFINA

	Published Data	Current Room-Temp	Cryogenic Experiment
α	0.5	0.7	0.9
E	4.5 kV/cm	12 kV/cm	40 kV/cm
Т	130 s	130 s	300 s
N	13000	14000	700000

WINO5 June 10 '05

IEDM

Mechanism	False EDM	Assumptions
	Uncertainty	
Non-zero $(B_0\uparrow\uparrow - B_0\uparrow\downarrow)$ from <u>mu</u> -metal <u>hysteresis</u>	$10^{-2} \times 10^{-28}$ e cm	(B₀↑↑− B₀↑↓) outside the super-conducting shield is that previously experienced in our nEDM experiments
Electric forces - cell displacement - dE ₀ /dr	1.0 × 10 ⁻²⁸ e cm	dEg/dr = 3×10 ⁻⁸ G/mm Rigidity of radial displacemen of cells = 100 kg/mm
Electrical leakage currents caused by E	1.0×10^{-28} e cm	Current of 1 nA at 40 kV/cm An asymmetric tangential flow of 50 mm
DC B- and E-fields directly from the high voltage supply	10 ⁻⁵ × 10 ⁻²⁸ e cm	DC current 1 mA in 40 cm diameter circuit 1.6 m from the shield end – current reverses with sign of HV
AC B-fields from the high voltage and dE/dt	0.05×10^{-28} e cm	Ripple on the high voltage 0.04 % - manufacturers figure 10 kHz and 50 Hz considered
$(\mathbf{E} \times \mathbf{v})/c^2$ 1st order UCN ensemble translation of CM	0.2×10^{-23} e cm	Upwards displacement of the UCN due to warming in storage = 1 mm Volume ave. angle E to $B_0 = 0.1$ radian
$(\mathbf{E} \times \mathbf{v}) / c^2$ 1st order UCN ensemble net circulation about CM	0.3×10^{-23} e cm	Circulation decay $\tau = 1s$ $\Delta F_T = E/10$ in outer 30 mm UCN enter at $R/4$ 2s wait before $1^{\alpha} \pi/2$ flip
$((\mathbf{E} \times \mathbf{v}) / c^2)^2$ 2nd order affects all individual trajectories	0.3×10^{-28} e cm	Gives E^2 shift $(E^{\uparrow} - E^{\downarrow})/\langle E \rangle = 0.05$ $\langle E \rangle = 60 \text{ kV/cm used}$ Two cells cancel effect to 10%
$(\mathbf{E} \times \mathbf{v})/c^2$ & dB_0/dz geometric phase affects all individl. trajectories	0.8×10^{-28} e cm	$dE_0/dz = 1 \mu G/m$ after trimming. $B_0 = 25 mG$ Rms v (UCN) = 5 m/s

error	Overall systematic error	1.7 × 10 ⁻²⁸ e cm	All the above errors are uncorrelated
-------	-----------------------------	------------------------------	--

--and Cp

¹⁹⁹Hg Electric Dipole Moment hep-ex/0012001

Optically pumped ¹⁹⁹Hg atoms precess in B, E fields, modulating absorption signal

 Dual cells remove effect of drifts in B

June 10

'05

Result: d(¹⁹⁹Hg) < 2.1 x 10⁻²⁸ e cm⁴

Imperial College/RAL

- Provides good limit on CPv effects in nuclear forces, inc. θ_{QCD}
- If from valence neutron, corresponds to d_n < 2x10⁻²⁵ ecm, because of electrostatic shielding.

The Thallium EDM experiment B.C. Regan, E.D. Commins, C.J. Schmidt and D. DeMille Berkeley 1st huge problem: motional interaction $\mu \cdot \mathbf{v} \times \mathbf{E}$ polar analyse The solution: add 2 more Tl beams going down E $\hbar\omega = \mu \mathbf{B} \pm \mathbf{dE}$ 2nd huge problem: stray static magnetic fields analyse polarise The solution: Add 4 Na beams for magnetometry **4 Tl atomic beams**

Final Tl result: PRL <u>88</u>, 071805 (2002)

- E = 123 kV/cm
- $B = 38 \ \mu T$

× 585

Effective field = 72 MV/cm

- $T_{\text{coherence}} = 2.4 \text{ ms}$
- Na co-magnetometer

The future for electron EDM experiments

polar molecules

potentially 1000 × more sensitive

The Imperial experiment uses ytterbium fluoride molecules

E.A. Hinds, B.E. Sauer, J.J. Hudson, P Condylis, M.R. Tarbutt, R. Darnley

The lowest two levels of YbF in an electric field E $X^{2}\Sigma^{+}$ (N = 0,v = 0) +d_nE -1 ① +1 ① F=1 -d_nE 170 MHz 0 ① **F=0** Goal: to measure the splitting 2d_eηE

Projections for the future

	2002 result	cold YbF beam	trapped molecules
background	150kHz	640kHz	40kHz
fringe height	1.5 kHz	160 kHz	10 kHz
oherence time	1.5 ms	1 ms	1 s
d _e in 1 day	3 10 ⁻²⁶ e cm	6 10 ⁻²⁸ e em	3 10 ⁻³⁰ e cm
long time = narrow fringes			

Conclusions

- Particle EDMs are sensitive probes of CP violation both within ($\theta_s < 2-6 \ge 10^{-10}$) and in models beyond the SM (The natural scale for the nEDM is SUSY is 10⁻²³, already stressed).
- Experiments are in progress to improve sensitivities by factors 100-1000.

June 10

'05

- There are other competing experiments for both neutrons (PSI, US) and electrons that I have no time to discuss.
- There are also plans to push limits on the muon EDM at future facilities (JPARC).

Imperial College/RAL

• The two CP violation communities seem completely separate, which is a pity....