

Measurement of $sin 2\beta(2\phi_1)$ at B-factories

Emanuele Di Marco Universita' di Roma "La Sapienza" and INFN-Roma

> Weak Interaction and Neutri Delphi, Greece June, 8th 2005

B₽

BABAR

CP violation in SM

- CP violation arises from a single complex phase in the quark-mixing matrix (CKM)
- In the neutral B_d system large effect in the interference between $B_d^{}-\overline{B}_d^{}$ mixing and decay
- B-factories give:
 - high L_{int} (Belle 446 fb⁻¹, BaBar 244 fb⁻¹)
 - high Q = $\epsilon(1-2w^2) \sim 30\%$
- Decays with single amplitude measure β :
 - b+c: $B^0 \rightarrow J/\psi K^0$, $B^0 \rightarrow D^*D^*$ "tree" mediated

 $- b \rightarrow s: B^{0} \rightarrow \phi K^{0}, B^{0} \rightarrow K_{s}K_{s}K_{s}, B^{0} \rightarrow K^{+}K^{-}K^{0} \text{ "penguin" mediated}$

• New Physics effects in the loops?

p. 2

$A_{CD}(t)$: CP "time dependent"

CP Asymmetry:

p. 3

- Mixing phase $\Phi_{M} = 2\beta$
- Penguin/Tree ~ $A|\lambda|^2 \Rightarrow$ small hadronic uncertainties
- Definite CP content: $CP(J/\psi K_{S(L)})=+(-)1$

$B^0 \rightarrow D^* D^*$

Vector-Vector decay

(),

• CP content not known \Rightarrow CP-odd fraction $R_{_{T}}$ determined in time-integrated transversity analysis

$B^0 \rightarrow D^*D^*$: asymmetry

Peaking background:

- No significant peaking bg from generic MC studies
- Conservative estimate: 1.5%±1.5%
- Assume NO CP asymmetry of peaking background by default

$cos2\beta$ from $B^0 \rightarrow ccK^{*0}$

- The 4-fold ambiguity on β from sin2 β can be reduced to 2-fold from cos2 β measurement (in SM, cos2 β >0)
- $B^0 \rightarrow J/\psi K^{*0}$, $K^{*0} \rightarrow K_{\varsigma} \pi^0$ sensitive to $\cos 2\beta$
 - CP-even/CP-odd interference contribute to $cos2\beta$
 - Sign ambiguity (due to strong phase ambiguity) resolved by BaBar
 (Phys. Rev. D 71, 032005 (2005))
 - Fit for P and S wave intensities and δ_S-δ₀ by Kπ mass bin, fixing δ₁-δ₀ and δ₁-δ₀ to
 - Solution I : (2.73, 0.18)
 - Solution II : (3.55, 2.96)
 - Physical behaviour observed for Solution II

0.7

ccK*0: result B^0 $\cos 2\beta$ from

	BELLE	BABAR	AVERAGE (HFAG)
			Care !
# Events	354	104	
$\sin(2\beta/2\phi_1)$	0.30 ± 0.32 ± 0.02	0.10 ± 0.57 ± 0.14	0.21±0.28 (CL=0.55, 0.6σ)
$\cos(2\beta/2\phi_1)$	+0.31 ± 0.91 ± 0.11	+3.32 ^{+0.76} -0.96 ± 0.27	1.60±0.67 (CL=0.026, 2.2σ)
$\sin(2\beta/2\phi_1)$	0.731 (WA)	0.731(WA)	
$\cos(2\beta/2\phi_1)$	+0.31 ± 0.86 ± 0.11	+2.72 ^{+0.50} -0.79 ± 0.27	

Impact of β on CKM

p. 9

• Due to hadronic uncertainties, not all b+s decays have clean interpretation of $|\beta_{penguin} - \beta_{\overline{cc}}|$

0, 10

Penguin decays

In the loops SUSY contributions are:

- mass suppressed: ($\propto 1/M^2$)
- coupling enhancement ($\sim \alpha_{s} / \alpha_{w}$)

- The theoretically cleanest mode: pure penguin
- Reconstruction:
 - $\phi \rightarrow K^-K^+$: critical K^+ ID: Čerenkov angle
 - $\phi: J^{CP}=1^{--}, K^{+}:J^{P}=0^{-} \Rightarrow |\cos\theta_{\mu}| \propto \cos^{2}\theta$
- ~2% peaking $\overline{B}B$ background (S-wave f_0K^0 , ϕK^*): largest systematic source: $\Delta S = \pm 0.06$

0, 12

 $|\cos\theta_{\mu}|$

BaBar

Events / (0.06666

0, 13

Combined $A_{CP}(t)$ results

- Doubly CKM-suppressed tree amplitude
 - Penguin dominated b→sdd
 - CP-odd eigenstate

0, 15

hadronic uncertainties quite under control (see CKM WS)

(http://ckm2005.ucsd.edu/WG/WG4/tue3/WG4_charge_session1.php

Experimental challenge: no charged track from primary vertex

- BaBar yield: N($K_{s}\pi^{0}$)=300±23
- Belle yield: N($K_{s}\pi^{0}$)=(168±16) +(83±18)

E. Di Marco, Win05 8 June 2005

 \overline{B}^{0}

 \overline{B}^{0}

$B^0 \rightarrow K_{c} \pi^0$: a new vertexing

Ę.

0.0

0.0

0.0

BABAR

15

0.08

0.06

0.04

0.02

dN/dL

svt lavers

10

E. Di Marco, Win05 8 June 2005

K, decay length in xy plane [cm]

- If K_{c} decays in the first layers of Si vertex detector, use K_c vertex for the B_{cp} : [1/cm]
 - other events used for C Beam K_s^0 constraint B_{tag}
- Beam-spot constrained vertexing
- Validated on $B^0 \rightarrow J/\psi K_{\varsigma}$ using K_{ς} vertex

A 3body mode: $B \rightarrow K_{\varsigma} K_{\varsigma} K_{\varsigma}$

- Dominantly penguin amplitude
- Defined $CP(3K_{c})=+1$

Gerhson-Hazumi hep/ph 0402097

Bose statistics \$\$ (K K;) even

A 3body mode: $B^0 \rightarrow K_s K_s K_s$

- Again Beam Spot Constrained vertexing
- If one $\rm K_s$ decays outside the "good-vertexing" fiducial region, most likely 1 or 2 of the other $\rm K_s$ decay within

Non resonant $B^0 \rightarrow K^+ K^- K_c$

- Same final state particles as $B^0 \rightarrow \phi K_{\varsigma}$, but higher BF
- Tighter PID (π mis-ID < 2%)

p<u>19</u>

• Standard vertexing with 2 tracks

CP-content in $B^0 \rightarrow K^+ K^- K_{c}$

- b \rightarrow c transition vetoed: D⁰, χ_{c0}^{-} , $\chi_{c2}^{-} \rightarrow K^{+}K^{-}$ and D⁺ $\rightarrow K^{+}K_{s}^{-}$
- Unlike $3K_s$ case, $B^0 \rightarrow K^+K^-K_s$ not CP-eigenstate by symmetry

$$f_{even}^{SU(2)} = 2\Gamma(B^+ \to K^+ K^0_S K^0_S) / \Gamma(B^0 \to K^+ K^- K^0)$$

$$f^{\text{Belle}}_{\text{even}} = 0.83 \pm 0.10 \pm 0.04 \text{ on } 140 \text{ fb}^{-1} \overset{\sim}{\swarrow}^{200}_{100} \text{hep-ex}/0504023 \text{ o}$$

 BaBar uses angular moment analysis: 300 use S,P wave to describe cos∂_@m(K⁺K⁻)

$$f_{even} = A_{S}^{2} / (A_{S}^{2} + A_{P}^{2})$$

PRD-RC 71, 091102 (2005)

 $f_{even}^{BaBar} = 0.89 \pm 0.08 \pm 0.06$

p. 20

E. Di Marco, Win05 8 June 2005

2 M(K⁺K⁻) (GeV/c²)

0 2

$B^0 \rightarrow K^+ K^- K_s$ asymmetries

$$B^0 \rightarrow \eta' K_s$$

• Many final states reconstructed:

 $= \eta' \rightarrow \eta \pi^{+} \pi^{-}, \ \rho \gamma. \ \eta \rightarrow \gamma \gamma, \ \pi^{+} \pi^{-} \pi^{0}. \ \mathsf{K}_{\varsigma} \rightarrow \pi^{+} \pi^{-}, \ \pi^{0} \pi^{0}$

• High BF: $(60.6 \pm 5.6 \pm 4.6) \times 10^{-6}$

p. 22

 $B^0 \rightarrow \eta' K_{\varsigma}$: asymmetries

• Estimated BB from MC:

p. 23

BaBar: S=+0.30 \pm 0.14 \pm 0.02 C=-0.21 \pm 0.10 \pm 0.02

Belle: S=+0.65 \pm 0.18 \pm 0.04 C=-0.19 \pm 0.11 \pm 0.05

- Penguin mode with lowest statistical uncertainty
- But theoretical uncertainties still under discussion...

Summary of results

- sin2 β from $B^0 \to ccK_s$ the best constraint on CKM unitarity triangle
- $sin 2\beta$ from penguin modes probe for New Physics
- The modes with cleanest theoretically interpretation $(\phi K_s, K_s K_s K_s)$ within 1σ from SM
- The two B-factories BaBar (SLAC) and Belle (KEK) show agreement in most of them (but $K_s K_s K_s$)
- $\sigma_{\rm stat}$ \Rightarrow $\sigma_{\rm syst}$ today. The increasing integrated luminosity is necessary to show indirect New Physics effects

BACK UP

BaBar vs. Belle

- $-\eta_f \times S_f$
- consistent $S_{_{\phi K}}$

p. 27

- inconsistent $S_{f^{\circ}K}$, S_{KsKsKs}
- $\sigma(K_{s}\pi^{0})_{BaBar} \ll \sigma(K_{s}\pi^{0})_{Belle}$

 $-\eta_f \times S_f$

Compatibility with SM

$B \rightarrow \phi K$: constraints on SUSY

B characterization

Kinematic variables:

$$m_{ES} = \sqrt{(s/2 + \overrightarrow{p_B} \overrightarrow{p_Y})^2 / E_Y^2 - \overrightarrow{p_B}^2}$$
$$\Delta E = E_B^* - \sqrt{s/2}$$

 $(E_{B(Y)}, \mathbf{p}_{B(Y)}) = 4$ momenta of B (Y(4S)) in laboratory frame

•
$$|\cos\theta_{SPH}|$$
 peak to 1 for $\overline{q}q$

• Combination of Legendre polynomials L_2, L_0 (Fisher, Neural Net, L_2/L_0) 300

Measurement of $A_{CD}(t)$

Rare processes measurement

Integrated Luminosity @ B-factories: 244 fb⁻¹ + 446 fb⁻¹ = 0.690 ab⁻¹

BaBar Run5 started one month ago!

0, 32

