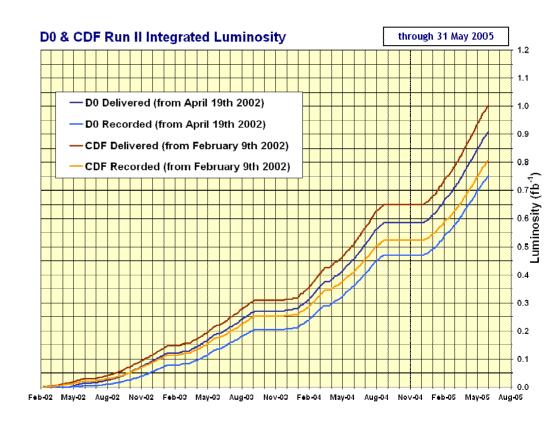


Rare B decays at Tevatron and the B

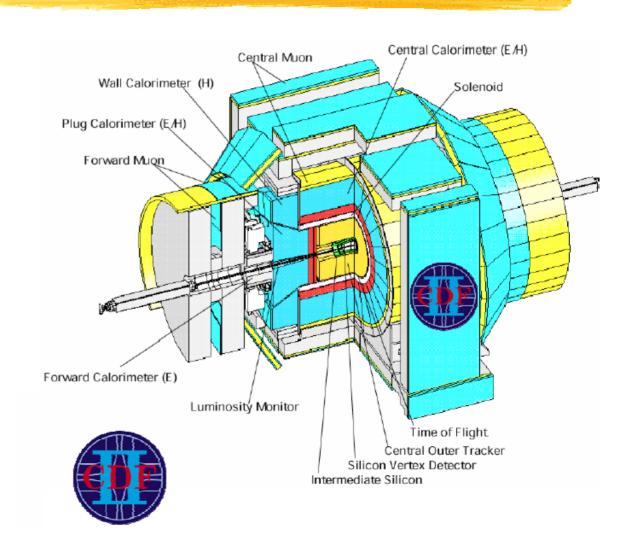
- Introduction
- CDF & DØ Detector
- Results on rare B decays
- Results on B_c
- Summary

Frank Lehner
U Zurich
WIN '05, Delphi
06-11 June, 2005


Pythia (not v6.1) sitting on the Delphic tripod cauldron and a priest.

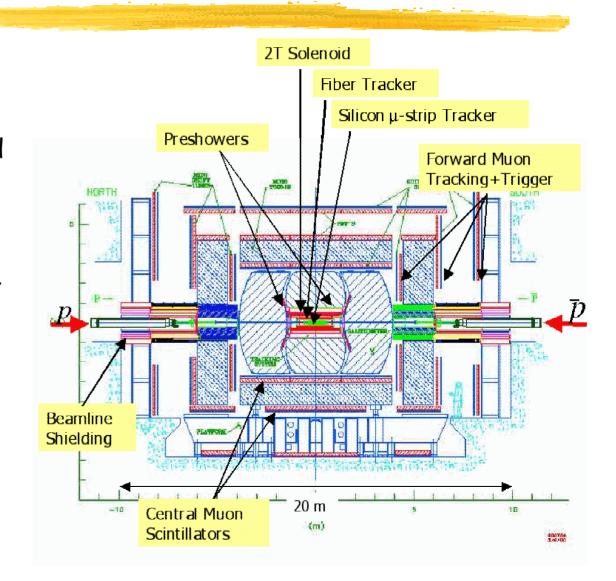
Tevatron performance

- excellent performance of Tevatron in 2004 and 2005
- machine delivered 900-1000 pb⁻¹ up to now !!
- recorded (DØ, CDF)
 - ~480-530 pb⁻¹ 2002 2004
 - ~270 pb⁻¹ 2005
 - high data taking efficiency ~85%
- current datasets analyzed
 - ~200-500 pb⁻¹ analyzed
 - compare with ~100 pb⁻¹ Run I



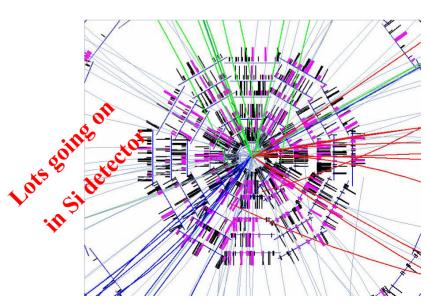
CDF detector

- Solenoid 1.4T
- Silicon Tracker SVX
 - up to |η|<2.0
 - SVX fast r-\phi readout for trigger
- Drift Chamber
 - 96 layers in |η|<1
 - particle ID with dE/dx
 - r-\phi readout for trigger
- Time of Flight
 - →particle ID



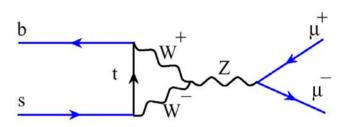
DØ detector

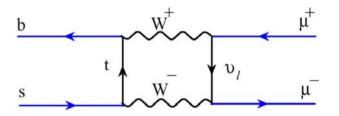
- 2T Solenoid
- beamline shielding
 - reduce background
- forward Muon + Central Muon detectors
 - excellent coverage |η|<2
- Fiber Tracker
 - 8 double layers
- Silicon Detector
 - up to |η|<2.5



B production at Tevatron

- Pro's:
 - large cross section >10⁴ x larger than at present B-factories Y(45)
 - all kinds of b hadrons produced:
 - B_d , B_s , B_c , B^{**} , Λ_b , Ξ_b , ...
- Con's:
 - QCD background overwhelming
 - efficient trigger and reliable tracking necessary
 - soft p_t spectrum, smaller boost than LEP
- Key for B physics program:
 - Muon system
 - Muon trigger (single and dimuon triggers)
 - Silicon Vertex + Tracker
 - trigger on displaced vertices/tracks





Purely leptonic B decay

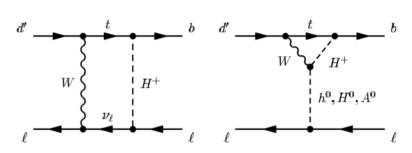
- purely leptonic B->I⁺ I⁻ decay is a flavor changing neutral current (FCNC)
- in SM forbidden at tree level
- proceeds thru penguin/box diagrams, helicity suppressed
- SM: BR(B_s-> $\mu^+\mu^-$)~ 3.4×10⁻⁹
- depends only on one SM operator in effective Hamiltonian, hadronic uncertainties small
- B_d relative to B_s suppressed by $|V_{td}/V_{ts}|^2 \sim 0.04$ if no additional sources of flavor violation

SM expectations:

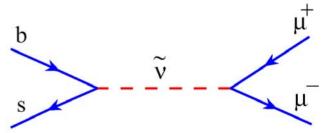
	$Br(B_d \rightarrow f f)$	$Br(B_s \rightarrow f')$
1=e	3.4 × 10 ⁻¹⁵	8.0 × 10 ⁻¹⁴
/=μ	1.0 × 10 ⁻¹⁰	3.4 × 10 ⁻⁹
/= r	3.1 × 10 ⁻⁸	7.4 × 10 ⁻⁷

Current published limits:

C.L. 90%	$Br(B_d \rightarrow f / f)$	$Br(B_s \rightarrow f f)$
/= e	< 6.1 ·10 ⁻⁸	< 5.4 ·10 ⁻⁵
/=μ	< 8.3 ·10⁻ ⁸	< 4.1·10 ⁻⁷
/=T	< 2.5%	< 5.0%



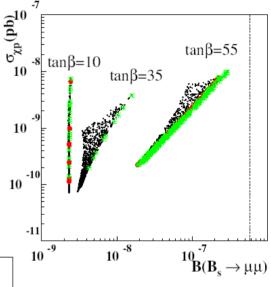
Purely leptonic B decay



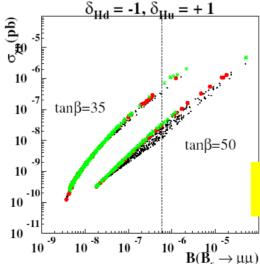
- excellent probe for new physics models
- particularly sensitive to models w/ extended Higgs sector
 - BR grows ~tan⁶β in MSSM
 - 2HDM models ~ tan⁴β
 - mSUGRA: BR enhancement correlated with shift of (g-2),
- also, testing ground for
 - minimal SO(10) GUT models
 - R_p violating models, contributions at tree level
 - (neutralino) dark matter ...

Two-Higgs Doublet models:

R_p violating:



Constraining dark matter



- mSUGRA model: strong correlation between BR(B_s->μ⁺μ⁻) with neutralino dark matter cross section especially for large tanβ
- constrain neutralino cross section with less than, within and greater than 2σ of WMAP relic density

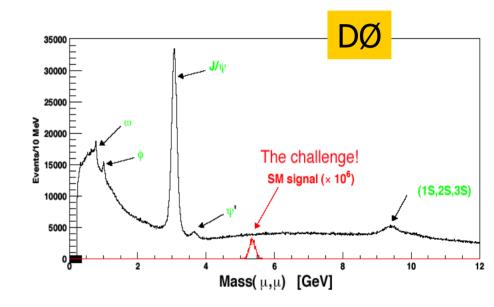
universal Higgs mass parameters

S. Baek et al., JHEP 0502 (2005) 067

non-universal Higgs mass Parameters, δH_u=1, δH_d=-1

Experimental search

· CDF:


- 364 pb⁻¹ di-muon triggered data
- two separate search channels
 - central/central muons
 - central/forward muons
- extract B_s and B_d limit

DØ:

 240 pb⁻¹ (update 300 pb⁻¹) di-muon triggered data

both experiments:

- blind analysis to avoid experimenter's bias
- side bands for background determination
- use B+ -> J/ψ K+ as normalization mode
 - J/ψ -> $\mu^+\mu^-$ cancels $\mu^+\mu^-$ selection efficiencies

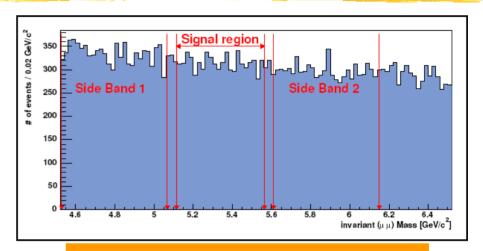
blinded signal region:

DØ: $5.160 < m_{\mu\mu} < 5.520 \text{ GeV/c}^2$;

 $\pm 2\sigma$ wide, σ =90 MeV

CDF: 5.169 < $m_{\mu\mu}$ < 5.469 GeV/c²; covering Bd and Bs; σ =25 MeV

Pre-selection



Pre-selection DØ:

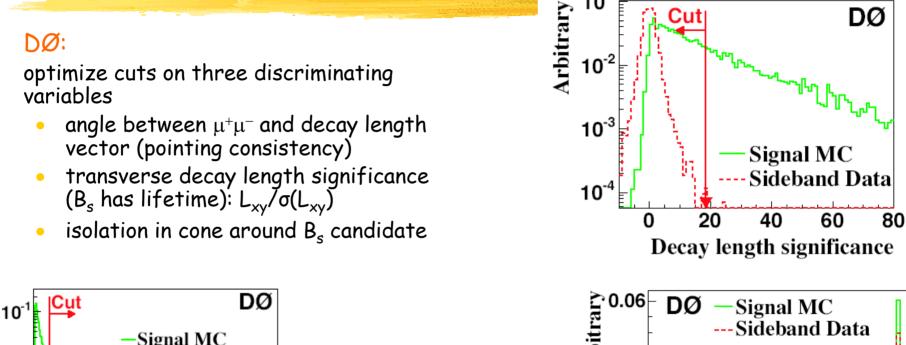
- 4.5 < m_{uu} < 7.0 GeV/c²
- muon quality cuts
- p_T(μ)>2.5 GeV/c
- |η(μ)| < 2
- $p_T(B_s \text{ cand.}) > 5.0 \text{ GeV/c}$
- good vertex

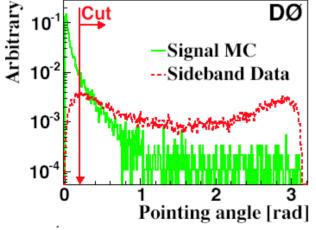
Pre-Selection CDF:

- $4.669 < m_{\mu\mu} < 5.969 GeV/c^2$
- muon quality cuts
- p_T(μ)>2.0 (2.2) GeV/c CMU (CMX)
- $p_T(B_s \text{ cand.}) > 4.0 \text{ GeV/c}$
- $|\eta(B_s)| < 1$
- good vertex
- 3D displacement L_{3D} between primary and secondary vertex
- σ(L_{3D})<150 μm
- proper decay length $0 < \lambda < 0.3$ cm

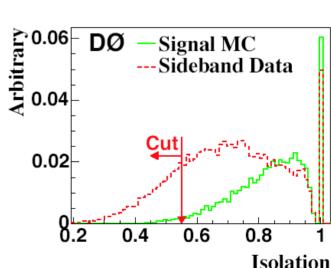
e.g. DØ: about 38k events after pre-selection

Potential sources of background:


- continuum μμ Drell-Yan
- sequential semi-leptonic b->c->s decays
- double semi-leptonic bb-> $\mu\mu X$
- $b/c->\mu x+fake$
- fake + fake

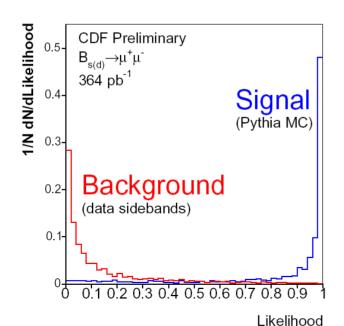


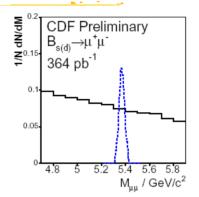
Optimization I

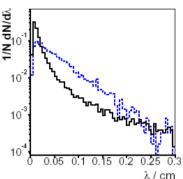


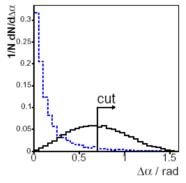
- DØ:
- optimize cuts on three discriminating variables

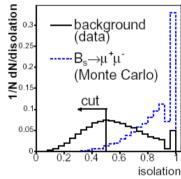
- use signal MC and 1/3 of (sideband) data for optimize
- random grid search
- maximize $\varepsilon/(1.+\sqrt{B})$
- total efficiency w.r.t 38k; selection criteria: 38.6%

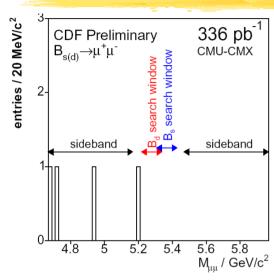


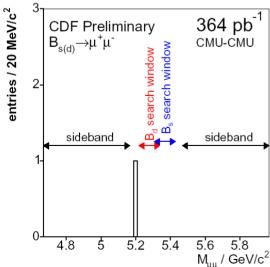



Optimization II

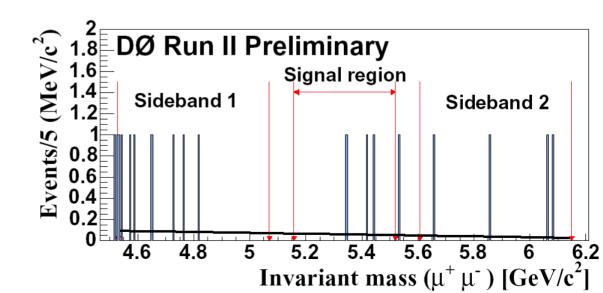



- CDF: discriminating variables
 - pointing angle between $\mu^+\mu^-$ and decay length vector
 - isolation in cone around B_s candidate
 - proper decay length probability $p(\lambda) = exp(-\lambda/\lambda_{Bs})$



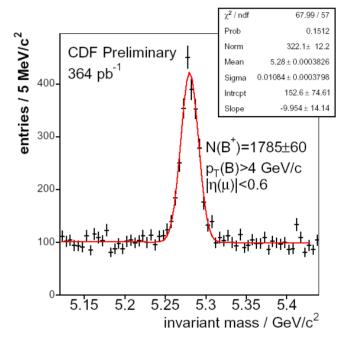

- construct likelihood ratio for optimization on "expected upper limit"
- LH cut efficiency w.r.t pre-selection criteria: 34.8%

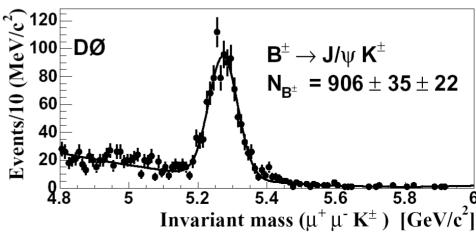
Unblinding the signal region



CDF:

- central/central: observe 0, expect 0.81 ± 0.12
- Central/forward: observe 0, expect 0.66 ± 0.13
- DØ:
 - PRL: observe 4, expect 3.7 ± 1.1
 - update: observe 4, expect 4.3 ± 1.2





Normalization

- relative normalization is done to B⁺ -> J/ψ K⁺
- advantages:
 - μ+μ-selection efficiency same
 - high statistics
 - BR well known
- disadvantages:
 - fragmentation b->B_u vs.
 b-> B_s
- DØ: apply same values of discriminating cuts on this mode
- CDF: no likelihood cut on this mode

The Limits

- $BR(B_s -> \mu^+ \mu^-) = N_{ul}/N_{B+} \times \varepsilon_{B+} / \varepsilon_{Bs} \times f_u/f_s \times BR(B^+ -> J/\psi K^+) \cdot BR(J/\psi -> \mu^+ \mu^-)$
 - $\varepsilon_B + /\varepsilon_{Bs}$ relative efficiencies
 - f_u/f_s fragmentation ratio (in case of B_s limit) use world average value with 15% uncertainty
- N.B.:
 - DØ mass resolution is not sufficient to separate B_s from B_d . Assume no B_d contribution (conservative)
 - CDF sets limit on B_s & B_d channels
 - all limits below are 95% C.L. Bayesian incl. sys. error, DØ also quotes FC limit

CDF B _s ->μμ	176 pb ⁻¹	7.5×10 ⁻⁷	Published
DØ Β _s ->μμ	240 pb ⁻¹	5.1×10 ⁻⁷	Published
DØ B _s ->μμ	300 pb ⁻¹	4.0×10 ⁻⁷	Prelim.
CDF B _s ->μμ	364 pb ⁻¹	2.0×10 ⁻⁷	Prelim
CDF B _d ->μμ	364 pb ⁻¹	4.9×10 ⁻⁸	Prelim

B_d limit x2 better than published Babar limit w/ 111 fb⁻¹

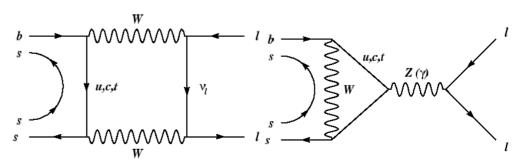
Limits

Example: SO(10) symmetry breaking model

best limit from CDF: BR(B_s -> $\mu^+\mu^-$) < 2.0 × 10⁻⁷ @95% C.L constraints SO(10) model severely

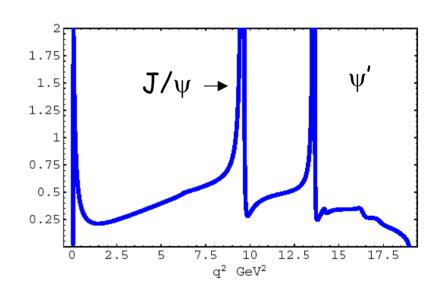
 $m_{16} = 3 \text{ TeV}, m_{A} = 500 \text{ GeV}$ 600 $BR(B_s \rightarrow \mu^+ \mu^-)$ 500 8×10-7 μ (GeV) 400 6×10 300 4×10⁻⁷ 200 2×10⁻⁷ 100 200 300 500 600 700 800 100 $M_{1/2}$ (GeV)

stay tuned for Tevatron limit combination

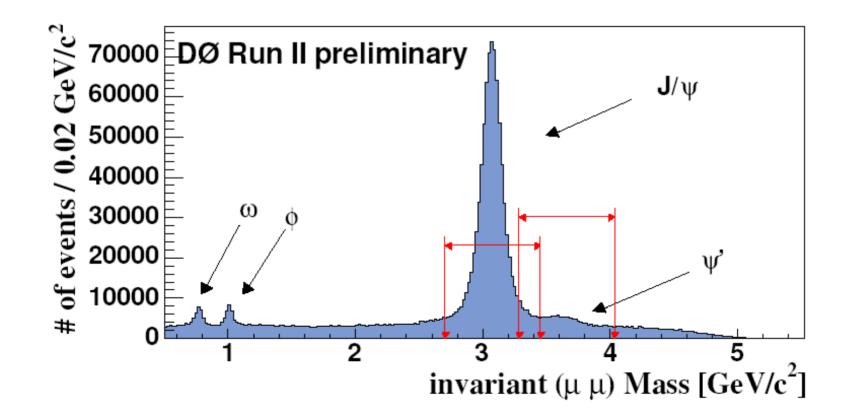

R. Dermisek et al. JHEP 0304 (2003) 037

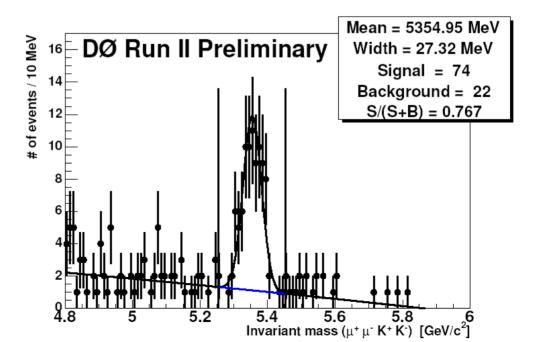
Contours of constant $Br(B_s \rightarrow \mu^+\mu^-)$

- long-term goal: investigate b -> s l⁺ l⁻ FCNC transition in B_s meson
- exclusive decay: B_s -> μ⁺μ⁻φ
- SM prediction:
 - short distance BR: ~2×10⁻⁶
 - about 30% uncertainty due to B->
 form factor
- 2HDM: enhancement possible, depending on parameters for tan β and M_{H+}
- presently only one limit
 - CDF Run I: 6.7×10⁻⁵ @ 95% C.L.

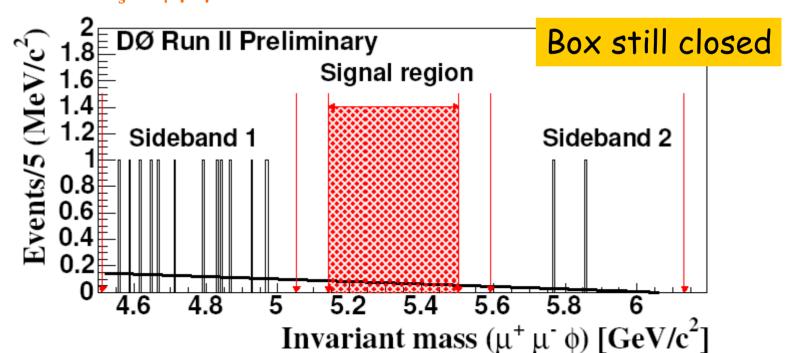


- DØ: 300 pb⁻¹ of dimuon data
- normalize to resonant decay B_s -> $J/\psi \phi$
- cut on mass region 0.5 < M(μμ) <
 4.4 GeV/c² excluding J/ψ & ψ΄
- two good muons, p_t > 2.5 GeV/c
- two additional oppositely charged tracks p_t>0.5 GeV/c for φ
- ϕ candidate in mass range 1.008 < $M(\phi)$ < 1.032 GeV/c²
- good vertex
- $p_t(B_s \text{ cand.}) > 5 \text{ GeV/c}$
- B_s collinearity > 0.95


Dilepton mass spectrum in b -> s | | decay


• dimuon candidates combined with additional ϕ candidate (looser selection)

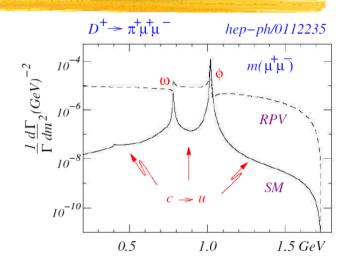
- Optimization with following variables in random grid search
 - pointing angle
 - decay length significance
 - isolation
- use resonant decay $B_s \rightarrow J/\psi \phi$ with same cuts as normalization
- gaussian fit with quadratic background: $74 \pm 11 \, \text{B}_s \rightarrow \text{J/}\psi \, \phi$


Expected Limit

- expected background from sidebands: 5.1 ± 1.0 events
- sensitivity/average expected limit (@95% C.L):

$$\phi \mu^+ \mu^-)/BR(B_s -> J/\psi \phi)> = 1.3 \times 10^{-2}$$
 if $BR(B_s -> J/\psi \phi) = 9.3 \times 10^{-4}$ PDG2004 is used: $\phi \mu^+ \mu^-)> = 1.2 \times 10^{-5}$

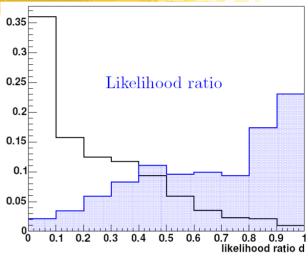
expect x5 improvement w.r.t previous limit

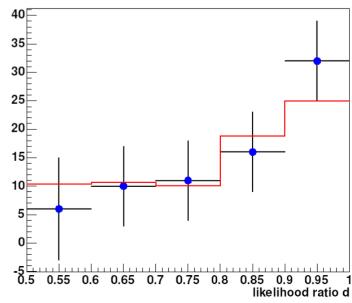




Study of FCNC charm decays

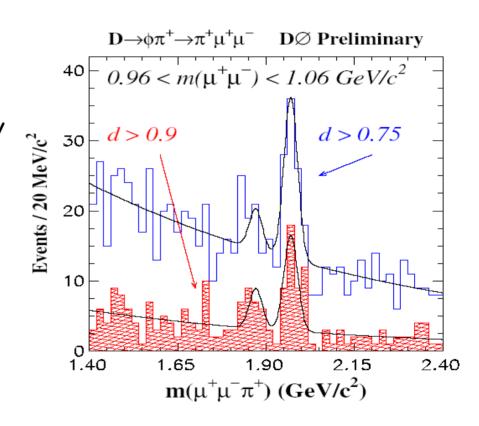
- FCNC in up-type flavor sector:
 - large areas of parameter space for new physics still unexplored
 - e.g. R_p violating models could enhance c->u l⁺l⁻ transitions
- Strategy: establish first resonant D_s^{\pm} -> ϕ π^{\pm} -> $\mu^{+}\mu^{-}$ π^{\pm} then search in continuum for non-resonant decay
- DØ: select in 508 pb-1 of dimuon data
 - 0.96 < m(φ -> μμ) < 1.06 GeV/c²
 - combine $\mu^+\mu^-$ with track p_t >0.18 GeV/c in same jet for $D_{(s)}$ candidates with 1.3 < m($\mu^+\mu^ \pi^\pm$) <2.5 GeV/c2,
 - average 3.3 candidates/event
 - choose best vertex-χ²





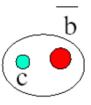
Optimization

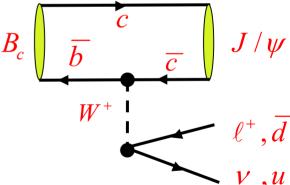
- construct likelihood ratio for signal (MC) and background (sideband) events based on
 - isolation of D candidate I_D
 - transverse decay length significance
 S_D
 - collinearity angle between D momentum and vector between prim. & sec. Vertex θ_{D}
 - significance ratio R_D = impact parameter of π^{\pm} / S_D
 - correlations taken into account
- good agreement in D_s yield between data and MC for different LH ratio cuts
- Likelihood cut chosen to maximize $\varepsilon_{\rm S}/\sqrt{\varepsilon_{\rm B}}$



$D_{(s)}^{\pm} \rightarrow \phi \pi^{\pm} \rightarrow \mu^{+}\mu^{-} \pi^{\pm}$

- observe 51 D_s candidates with expected background of 18
 - excess with (>7σ) significance
- first observation of resonant decay $D_s^{\pm} \rightarrow \phi \pi^{\pm} \rightarrow \mu^{+}\mu^{-} \pi^{\pm}$ as benchmark
- fit yields $13 \pm 5 D^{\pm}$ events (2.7σ)
- limit on D[±] -> φ π[±] -> μ⁺μ⁻ π[±] almost factor 3 better than previous experiments
- accomplished first major step in FCNC three-body charm decay program
- Future: search for excess in nonresonant continuum region


$$\mathcal{B}(D^+ \to \phi \pi^+ \to \pi^+ \mu^+ \mu^-) < 3.14 \times 10^{-6} \ (90\% \text{ C.L.})$$

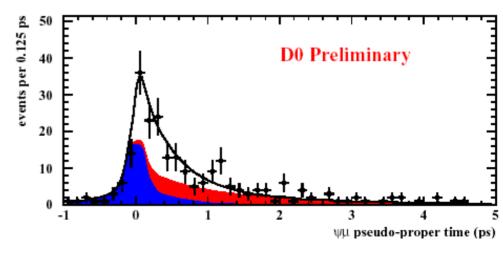

B_c meson

- least well known ground state B meson
- theory: large mass and shortest life time
- measurement of B_c properties are good test of quark model
- both quarks can decay semileptonically
- first observation of B_c in semileptonic decay in Run I (CDF): 20 ± 6 events

B_c meson

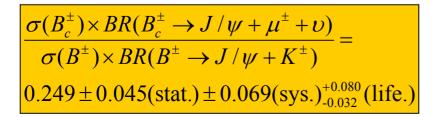
PDG 2004	Bc	Compare to B ^o
m [GeV/c2]	6.4 ± 0.4	5.2793 ± 0.0007
τ [ps]	0.46 ± 0.17	1.536 ± 0.014

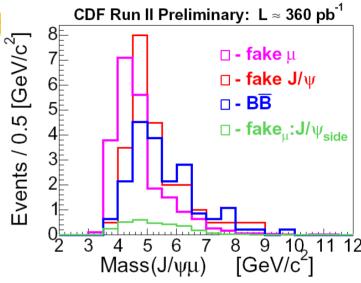
Semileptonic B_c decay I

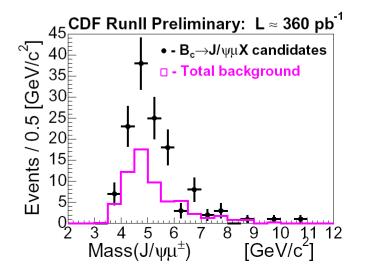

- B_c + -> J/ψ I + ν
- DØ: 210 pb-1 of dimoun data
- combine J/ψ (-> $\mu^+\mu^-$) with extra high-quality muon in event
- perform simultaneous fit to $J/\psi + \mu$ mass and (pseudo-) proper decay time
- average correction factor to account for missing v momentum:
- 231 candidates, signal of 95 ± 11
 ± 12

$$m = 5.95 \pm 0.14 \pm 0.34 \ GeV/c^2$$

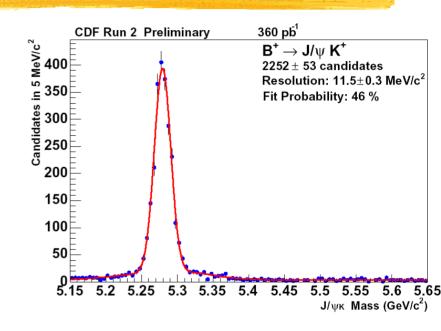
$$\tau = 0.448^{+0.123}_{-0.096} \pm 0.121 ps$$






Semileptonic B_c decay II

- $B_c^{\pm} J/\psi + I^{\pm} + v$
- CDF: 360 pb⁻¹ of dimoun data
- combine J/ψ (-> $\mu^+\mu^-$) with extra high-quality muon in event
- detailed study of background sources
 - fake "third" muon or fake J/ψ
 - b $[\rightarrow J/\psi]$ b $[\rightarrow \mu]$
- 60.0 ± 12.6 signal events above background
- measure BR· σ relative to B[±] -> J/ψ K[±] for $p_t(B)$ > 6 GeV/c:



B_c mass from fully reconstructed decay mode

- so far large exp. uncertainty on mass
 - -> use fully reconstructed mode for better resolution
- two-body decay mode $B_c \rightarrow J/\psi \pi^{\pm}$ best choice
- CDF: analysis uses 360 pb⁻¹
- B^{\pm} -> J/ψ K^{\pm} as control sample (topological similar)
- perform blind analysis search
 - mass region 5.6 < M(J/ ψ π^{\pm}) < 7.2 GeV/c2, 100× wider than expected resolution
 - cut optimize on signal MC (S) and background data (B) in mass window
 - maximize Σ =S/(1.5+ \sqrt{B}) as balanced score function for "discovery" and limit-setting
 - 390 candidates in window remain

Summary of cut values used:

1.
$$p_{T}(\pi)$$
 > 1.8 GeV/c

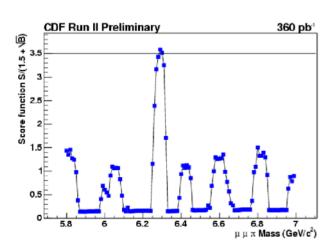
2.
$$L_{xy}/\sigma(L_{xy}) > 4.4$$

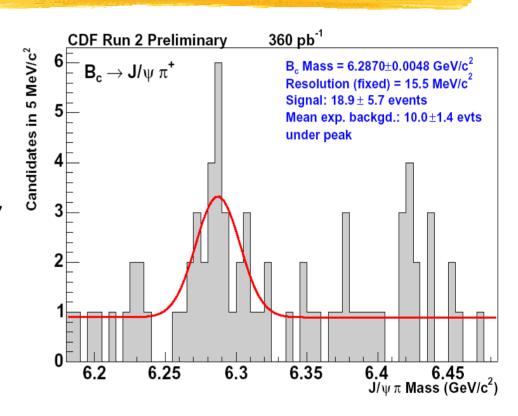
3.
$$\chi^2(3D)$$
 < 9.0

4.
$$d_0(B_c)$$
 < 65 µm

5. pointing angle < 0.4 radians

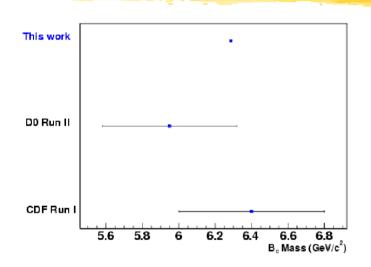
6.
$$\chi^2_{\text{vtx}}(\pi)$$
 < 2.6

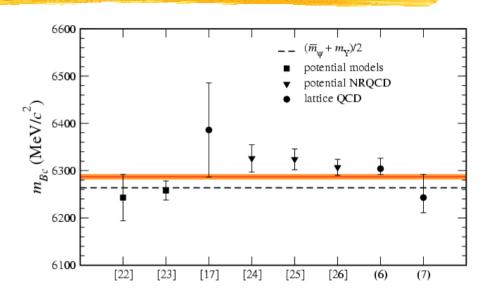

7. ct
$$< 750 \,\mu m$$



B_c mass from fully reconstructed decay mode

- before unblinding
 - define in advance procedure for signal peak search
 - define in advance level of acceptable "false" probability that background fluctuates into signal: p=0.1%
 - deploy toy MC with background only to define score function value corresponding to p=0.1%
- apply procedure & score function to data




signal of 18.9 ± 5.7 events found

B_c mass from full reconstructed decay mode

$$M(B_c) = (6287.0 \pm 4.8_{stat.} \pm 1.1_{syst.})MeV/c^2$$

- precision on $M(B_c)$ improved by a factor 100!
- main systematic uncertainty from background shape given by low statistics
- good agreement with theory

Conclusions

- CDF & DØ provide world best limits on purely leptonic decay $B_{d.s}$ -> $\mu^+\mu^-$
- with more statistics to come enhance exclusion power/discovery potential for new physics
- current sensitivity for b -> s l+ l- transition in exclusive B_s -> $\mu^+\mu^-\phi$ decay shown, still factor 5 away from SM
- first observation of benchmark channel D_s^\pm -> ϕ π^\pm -> $\mu^+\mu^ \pi^\pm$ as first step towards a charm rare FCNC decay program
- clear signals for $B_c^{\pm} \rightarrow J/\psi + l^{\pm} + v$, allowing to study mass & lifetime of B_c
- most precise mass measurement from fully reconstructed B $_{c}$ -> J/ ψ π^{\pm}

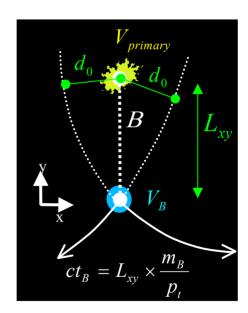
Knowledge must come through action; you can have no test which is not fanciful, save by trial.

Sophocles, Trachiniae Greek tragic dramatist (496 BC

- 406 BC)

Experimental status

- previous experimental results on B_s->μμ (@95% C.L)
- CDF (100 pb⁻¹, Run I): 2.6 × 10⁻⁶ PRD57(1998)3811
- CDF (171 pb⁻¹): 7.5×10^{-7} PRL93(2004)032001
- $D\emptyset$ (240 pb⁻¹): 5.0 × 10^{-7} PRL94(2005)071802
- DØ prel. (300 pb⁻¹)
- CDF prel. (360 pb⁻¹)


Will cover these results

Triggering on B's

- single lepton triggers
 - semileptonic B decays
 - variety of triggers with raised p_t threshold, pre-scaled and/or supported with track/displaced vertex triggers
- two-muon triggers
 - from J/ψ
 - tracks \leftrightarrow matched μ
 - p_t(μ) > 1.5 GeV/c
- two track triggers
 - displaced tracks & vertex
 - fully hadronic reconstructed modes, e.g. two body charmless decays

