$B ightarrow \pi \pi,$ New Physics in $B ightarrow \pi K$ and Implications for Rare Decays

Felix Schwab, MPI Munich, TU Munich

A.J. Buras, R.Fleischer, S.Recksiegel, F.S.

hep-ph/0309012, hep-ph/0312259, hep-ph/0402112, hep-ph/0410407

A Look Ahead

The $B \to \pi \pi$ System

The decay $B \rightarrow \pi \pi$ is tree dominated with sizable penguin contributions.

Recent measurements of $B \rightarrow \pi\pi$ branching ratios differ significantly from QCD Factorization predictions (in units of 10^{-6}):

Mode	Theory	S1	S2	S3	S4	Experiment
$B^- \to \pi^- \pi^0$	$6.0_{-2.4}^{+3.0}_{-1.8}^{+2.1}_{-0.5}^{+1.0}_{-0.4}^{+0.4}$	5.8	5.5	6.0	5.1	5.5 ± 0.6
$\bar{B}^0 \to \pi^+ \pi^-$	$8.9_{-3.4}^{+4.0}_{-3.0}_{-1.0}^{+3.6}_{-0.6}_{-1.0}^{+1.2}_{-0.8}$	6.0	4.6	9.5	5.2	4.6 ± 0.4
$\bar{B}^0 \to \pi^0 \pi^0$	$0.3^{+0.2+0.2+0.3+0.2}_{-0.2-0.1-0.1-0.1}$	0.7	0.9	0.4	0.7	1.5 ± 0.3

Numbers from Beneke, Neubert, 2003

Observables

Introduce two observables:

$$R_{+-}^{\pi\pi} \equiv 2 \left[\frac{Br(B^+ \to \pi^+ \pi^0) + Br(B^- \to \pi^- \pi^0)}{Br(B^0_d \to \pi^+ \pi^-) + Br(\bar{B}^0_d \to \pi^- \pi^-)} \right] \frac{\tau_{B^0_d}}{\tau_{B^+}} = 2.20 \pm 0.31$$
$$R_{00}^{\pi\pi} \equiv 2 \left[\frac{Br(B^0_d \to \pi^0 \pi^0) + Br(\bar{B}^0_d \to \pi^0 \pi^0)}{Br(B^0_d \to \pi^+ \pi^-) + Br(\bar{B}^0_d \to \pi^+ \pi^-)} \right] = 0.67 \pm 0.14.$$

- In QCD Factorization, the default values are: $R_{+-}^{\pi\pi} = 1.24$ and $R_{00}^{\pi\pi} = 0.07$.
- Study also CP asymmetries the asymmetries in $B_d \rightarrow \pi^+\pi^-$ are measured to be large (though exp. situation is a bit unclear):

$$\mathcal{A}_{\rm CP}^{\rm dir}(B_d \to \pi^+\pi^-) = -0.37 \pm 0.11, \ \mathcal{A}_{\rm CP}^{\rm mix}(B_d \to \pi^+\pi^-) = 0.61 \pm 0.14.$$

Parameterization of Observables

The observables can be phenomenologically parameterized:

 $R_{+-}^{\pi\pi} = F_1(\overline{d,\theta,x,\Delta;\gamma}), \quad R_{00}^{\pi\pi} = F_2(\overline{d,\theta,x,\Delta;\gamma}),$

x and d are color-suppressed tree and penguin topologies respectively, and Δ and θ are the respective strong phases.

Similarly,

 $\mathcal{A}_{\rm CP}^{\rm dir}(B_d \to \pi^+\pi^-) = G_1(d, \theta; \gamma), \quad \mathcal{A}_{\rm CP}^{\rm mix}(B_d \to \pi^+\pi^-) = G_2(d, \theta; \gamma, \phi_d),$

Determine hadronic parameters:

$$\begin{aligned} d &= 0.51^{+0.26}_{-0.20}, \qquad \theta &= + \left(140^{+14}_{-18}\right)^{\circ}, \\ x &= 1.15^{+0.18}_{-0.16}, \qquad \Delta &= - \left(59^{+19}_{-26}\right)^{\circ}. \end{aligned}$$

The $B ightarrow \pi K$ Puzzle

Due to CKM factors, $B \rightarrow \pi K$ are penguin dominated decays \Rightarrow Much more likely to be affected by new physics.

Introduce again observables:

$$R_{\rm c} \equiv 2 \left[\frac{Br(B^+ \to \pi^0 K^+) + Br(B^- \to \pi^0 K^-)}{Br(B^+ \to \pi^+ K^0) + Br(B^- \to \pi^- \bar{K}^0)} \right] = 1.00 \pm 0.08$$

$$R_{\rm n} \equiv \frac{1}{2} \left[\frac{Br(B_d^0 \to \pi^- K^+) + Br(\bar{B}_d^0 \to \pi^+ K^-)}{Br(B_d^0 \to \pi^0 K^0) + Br(\bar{B}_d^0 \to \pi^0 \bar{K}^0)} \right] = 0.79 \pm 0.08.$$

More on Observables

Both R_n and R_c are affected by electroweak penguin amplitudes. A third observable,

$$R \equiv \left[\frac{Br(B_d^0 \to \pi^- K^+) + Br(\bar{B}_d^0 \to \pi^+ K^-)}{Br(B^+ \to \pi^+ K^0) + Br(B^- \to \pi^- \bar{K}^0)}\right] \frac{\tau_{B^+}}{\tau_{B_d^0}} = 0.82 \pm 0.06,$$

only has color suppressed EWP contributions. Parameterize observables:

$$R_{\mathbf{c},\mathbf{n}} = 1 + 2r_{\mathbf{c},\mathbf{n}}(q - \cos\gamma)\cos\delta_{\mathbf{c},\mathbf{n}} + [(q - \cos\gamma)^2 + \sin^2\gamma]r_{\mathbf{c},\mathbf{n}}^2,$$

$$R = 1 - 2r\cos\delta\cos\gamma + r^2.$$

The r_i correspond to the tree contributions, q describes the electroweak penguin amplitude.

Hadronic Parameters II: From $\pi\pi$ to πK

Using SU(3) flavor symmetry,

$$B \to \pi \pi \stackrel{\mathrm{SU}(3)}{\Longrightarrow} B \to \pi K$$

Predictions of R and $\mathcal{A}_{CP}^{dir}(B_d \to K^+\pi^-)$:

 $R = 0.943^{+0.028}_{-0.021}, \quad (R_{\exp} = 0.82 \pm 0.06)$

 $\mathcal{A}_{\rm CP}^{\rm dir}(B_d \to K^+\pi^-) = 0.127^{+0.102}_{-0.066}, \quad (\mathcal{A}_{\rm CP}^{\rm dir}(B_d \to K^+\pi^-)_{\rm exp} = 0.113 \pm 0.019)$

More checks:

- Determination of γ from $B \to \pi\pi$ and $B \to \pi K$.
- The value of r_c agrees with an alternative determination using $B \rightarrow \pi K$ data: $r_c^{BFRS} = 0.20 \pm 0.08$; $r_c^{\pi K} = 0.190 \pm 0.011$.
- Assumptions on annihilation topologies and certain rescattering effects can be tested in $B \rightarrow KK$ system (Fleischer Recksiegel, 2004).

Electroweak penguins

Introduce possible CP violating EWP parameter: $q = |q|e^{i\phi}$.

Also, the EWP parameter q can be calculated in the SM: q = 0.69 (Neubert, Rosner)

 \Rightarrow Allows SM prediction of observables

This calculation gives also connection to Inami Lim Function:

$$C = 2.35q \ e^{i\phi} - 0.82$$

Bounds from Rare Decays

- Semileptonic rare decays are clean and sensitive to EWPs.
- Assume universal CP violating couplings in EWPs (simplest and most predictive scenario).
- Then B → X_sl⁺l⁻ gives strong bounds on C and rules out values of q that are as large as implied by the B → πK data (also the bound on K_L → π⁰e⁺e⁻ would be violated and ε[']/ε is in trouble).
- Since $B \rightarrow \pi K$ data point towards enhanced EWPs, we can still consider them, but impose these constraints (|Y| = 2.2). This leads to

$$q = 0.92^{+0.07}_{-0.05}, \quad \phi = -(85^{+11}_{-14})^{\circ}.$$

Predictions for CP Asymmetries

Quantity	Our Prediction	Experiment
$\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}(B_d \! ightarrow \! \pi^0 \pi^0)$	$-0.28^{+0.37}_{-0.21}$	-0.28 ± 0.39
$\mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}}(B_d \! ightarrow \! \pi^0 \pi^0)$	$-0.63^{+0.45}_{-0.41}$	$-0.48^{+0.48}_{-0.40}$
$\mathcal{A}_{\rm CP}^{\rm dir}(B_d \!\rightarrow\! \pi^{\mp} K^{\pm})$	$0.127\substack{+0.102\\-0.066}$	0.113 ± 0.019
$\mathcal{A}_{\rm CP}^{\rm dir}(B^{\pm} \to \pi^0 K^{\pm})$	$0.10\substack{+0.25\\-0.19}$	-0.04 ± 0.04
$\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}(B_d \! ightarrow \! \pi^0 K_{\mathrm{S}})$	$0.01\substack{+0.15 \\ -0.18}$	0.09 ± 0.14
$\mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}}(B_d \! ightarrow \! \pi^0 K_{\mathrm{S}})$	$-0.98^{+0.04}_{-0.02}$	$-0.34^{+0.29}_{-0.27}$

All quite OK!!

Predictions for Rare Decays I: $K \rightarrow \pi \bar{\nu} \nu$

- The decays K⁺ → π⁺νν and K_L → π⁰νν are very clean theoretically and sensitive to electroweak penguins.
 ⇒ Very well suited to test the scenario.
- In our scenario, $Br(K_L \rightarrow \pi^0 \bar{\nu} \nu)$ changes as

$$\frac{Br^{NP}(K_L)}{Br^{SM}(K_L)} = \left(\frac{|X^{NP}|}{|X^{SM}|}\frac{\sin\beta_X}{\sin\beta}\right)^2, \qquad \beta_X \approx 111^\circ$$

• Standard Model values (Buras, F.S., Uhlig, 2004):

$$Br(K^+) = 7.8 \cdot 10^{-11}$$
 $Br(K_L) = 3.0 \cdot 10^{-11}$

• We find:

$$Br(K^+) = 7.5 \cdot 10^{-11} \quad Br(K_L) = 3.1 \cdot 10^{-10}$$

Predictions for Rare Decays II: Compilation

Decay	SM prediction	Our scenario	Exp. bound (90% C.L.)
$K^+ \to \pi^+ \bar{\nu} \nu$	$(7.8 \pm 1.2) \cdot 10^{-11}$	$(7.5 \pm 2.1) \cdot 10^{-11}$	$(14.7^{+13.0}_{-8.9}) \cdot 10^{-11}$
$K_L \to \pi^0 \bar{\nu} \nu$	$(3.0 \pm 0.6) \cdot 10^{-11}$	$(3.1 \pm 1.0) \cdot 10^{-10}$	$< 5.9 \cdot 10^{-7}$
$K_L \to \pi^0 e^+ e^-$	$(3.2^{+1.2}_{-0.8}) \cdot 10^{-11}$	$(7.8 \pm 1.6) \cdot 10^{-11}$	$< 2.8 \cdot 10^{-10}$
$B \to X_s \bar{\nu} \nu$	$(3.5 \pm 0.5) \cdot 10^{-5}$	$pprox 7\cdot 10^{-5}$	$< 6.4 \cdot 10^{-4}$
$B_s \to \mu^+ \mu^-$	$(3.42 \pm 0.53) \cdot 10^{-9}$	$\approx 17 \cdot 10^{-9}$	$< 9.5 \cdot 10^{-7}$

• ε'/ε has large hadronic uncertainties, and can be "made compatible" with measurements.

Conclusions and Outlook

- Data in both $B \to \pi\pi$ and $B \to \pi K$ systems show features that present some challenge to theory.
- The $B \rightarrow \pi\pi$ decays are tree dominated, and the data can be described by hadronic interference effects within the Standard Model.
- Still, modern QCD-based approaches seem to be in trouble.
- The $B \to \pi K$ data signal new physics, if $R_n \neq R_c$ is confirmed with further (more precise) data.
- The simple model of enhanced EWP with a CP violating phase can easily be tested in rare decays. So can many, more sophisticated, extensions of that model.
- \implies Keep an eye on the data!