Higgs Boson Searches at the Tevatron Collider

Frank Filthaut for the DØ and CDF Collaborations

Radboud University Nijmegen and NIKHEF

WIN'05, 6-11 June, 2005

- Generalities
- Low-mass Higgs Boson Searches
- High-mass Higgs Boson Searches
- Exotics
- Perspectives

Higgs Boson Production Processes at the Tevatron

After the closure of LEP (establishing, within the SM, $M_{\rm H} > 115$ GeV at 95% C.L.), and before LHC startup, the Tevatron is the unique place to look for the Higgs boson.

The Tevatron is (potentially) sensitive to both "low" and "high" masses ⇒ a wide range of processes to consider!

Expectations

Several studies carried out, one in '99 [hep-ph/0010338] and one in '03 [FERMILAB-PUB-03-320-E]

• implemented best understanding of object ID efficiencies etc.

Expectations

Several studies carried out, one in '99 [hep-ph/0010338] and one in '03 [FERMILAB-PUB-03-320-E]

• implemented best understanding of object ID efficiencies etc.

In this talk: focus on SM Higgs boson, but also consider non-SM alternatives

Low-mass Higgs Boson Searches

Low-mass search ($m_{\rm H} < 135$ GeV) strategy:

- make use of large $H \to b\bar{b}$ branching ratio \Rightarrow b-tagging
- but this signature drowns in QCD b production background ⇒ need associated production:

• requires good b-jet E resolution

$W(\rightarrow \ell \nu)H(\rightarrow b\bar{b})$

This is the benchmark channel: ℓ^{\pm} , $\not\!\!E_T$, b jets, large ($\sim 20\%$) W $\to \ell \nu$ branching ratios

CDF analysis:

- start from "standard" W+jets sample ($p_{\mathsf{T}}^{\ell} > 20$ GeV, $\not\!\!E_{\mathsf{T}} > 20$ GeV)
- require exactly 2 jets (reduce tt
 background)
- apply b-tagging and reconstruct invariant mass
- look for a resonance in the invariant mass distribution, set limits

Important issues: efficiency optimisation, understanding of (instrumental) backgrounds (background dominated by W+jets, fakes)

$W(\rightarrow \ell \nu)H(\rightarrow b\bar{b})$

This is the benchmark channel: ℓ^{\pm} , $\not\!\!E_T$, b jets, large ($\sim 20\%$) W $\to \ell \nu$ branching ratios

CDF analysis:

- start from "standard" W+jets sample ($p_{\mathsf{T}}^{\ell} > 20$ GeV, $\not\!\!E_{\mathsf{T}} > 20$ GeV)
- require exactly 2 jets (reduce tt
 background)
- apply b-tagging and reconstruct invariant mass
- look for a resonance in the invariant mass distribution, set limits

Important issues: efficiency optimisation, understanding of (instrumental) backgrounds (background dominated by W+jets, fakes)

$W(\rightarrow \ell \nu)H(\rightarrow b\bar{b})$

This is the benchmark channel: ℓ^{\pm} , $\not\!\!E_T$, b jets, large ($\sim 20\%$) W $\to \ell \nu$ branching ratios

CDF analysis:

- start from "standard" W+jets sample ($p_{\mathsf{T}}^{\ell} > 20$ GeV, $\not\!\!E_{\mathsf{T}} > 20$ GeV)
- require exactly 2 jets (reduce tt
 background)
- apply b-tagging and reconstruct invariant mass
- look for a resonance in the invariant mass distribution, set limits

Important issues: efficiency optimisation, understanding of (instrumental) backgrounds (background dominated by W+jets, fakes)

Results:

- cross section limits (\sim 5 pb) clearly above SM predictions (\sim 0.1 pb); however, they are becoming interesting for other models (with similar signatures), e.g. $\rho_{\pm}^{\pm} \rightarrow W^{\pm}\pi_{0}^{T}(\rightarrow b\bar{b})$
- this sort of benchmark analysis also constitutes a reality check, lending confidence to the Higgs Sensitivity workshop projections:

	Run2	Run1		Run2 Higgs sensitivity report	
	This Analysis	Cut Based	NN	CASE 0	
Mass Resolution	17%	15%		15%	10%
S	0.24	0.31	0.24	0.13	0.13
B	18.2	50.7	18.3	3.2	2.1
S/\sqrt{B}	0.057	0.04	0.056	0.075	0.09

Table 1: The significance comparison of different analyses for $m_F = 115 \text{ GeV}/e^2$. The "CASE 0" in Run2 Higgs sensitivity report uses the same lepton selection and SECVTX b-tagging, as this analysis. There is no extension of higher η for either lepton identification or b-tagging. Both jets are required to be b-tagged, but allowing that the second b-tag be significantly looser(SECVTX or JPB) than the first one (SECVTX).

Similar results available from DØ (but using W \rightarrow e ν only):

$Z(\rightarrow u \bar{ u})H(\rightarrow b\bar{b})$

Similar production cross section and $(Z \to \nu \bar{\nu})$ branching ratio. . . but no charged lepton!

- select events with $\not\!\!E_T > 25$ GeV, ≥ 2 jets with $E_T > 20$ GeV
- select well-measured events using $\Delta\phi(E_T,\phi_{\rm jets})$, $H_T\equiv|\sum_{\rm jets}\vec{p}_T|$, $P_T^{\rm trk}\equiv|\sum_{\rm trk}\vec{p}_T|$, $P_{T,2}^{\rm trk}\equiv|\sum_{\rm trk\ in\ jets}\vec{p}_T|$, estimate fake background
- apply b-tagging, check w/ single-tag sample
- search for resonance in the m_{jj} distribution
- set limits

$Z(\rightarrow \nu \bar{\nu})H(\rightarrow b\bar{b})$

Similar production cross section and $(Z \to \nu \bar{\nu})$ branching ratio. . . but no charged lepton!

- select events with $\not\!\!E_T > 25$ GeV, ≥ 2 jets with $E_T > 20$ GeV
- select well-measured events using $\Delta\phi(E_T,\phi_{\rm jets})$, $H_T\equiv|\sum_{\rm jets}\vec{p}_T|$, $P_T^{\rm trk}\equiv|\sum_{\rm trk}\vec{p}_T|$, $P_{T,2}^{\rm trk}\equiv|\sum_{\rm trk\ in\ jets}\vec{p}_T|$, estimate fake background
- apply b-tagging, check w/ single-tag sample
- search for resonance in the m_{jj} distribution
- set limits

$Z(\rightarrow u \bar{ u})H(\rightarrow b\bar{b})$

Similar production cross section and $(Z \to \nu \bar{\nu})$ branching ratio. . . but no charged lepton!

- select events with $\not\!\!E_T > 25$ GeV, ≥ 2 jets with $E_T > 20$ GeV
- select well-measured events using $\Delta\phi(E_T,\phi_{\rm jets})$, $E_T \equiv |\sum_{\rm jets} \vec{p}_{\rm T}|$, $P_{\rm T}^{\rm trk} \equiv |\sum_{\rm trk} \vec{p}_{\rm T}|$, $P_{\rm T,2}^{\rm trk} \equiv |\sum_{\rm trk} \vec{p}_{\rm T}|$, estimate fake background
- apply b-tagging, check w/ single-tag sample
- search for resonance in the m_{jj} distribution
- set limits

$Z(\rightarrow u \bar{ u})H(\rightarrow b\bar{b})$

Similar production cross section and $(Z \to \nu \bar{\nu})$ branching ratio. . . but no charged lepton!

- select events with $\not\!\!E_T > 25$ GeV, ≥ 2 jets with $E_T > 20$ GeV
- select well-measured events using $\Delta\phi(E_T,\phi_{\rm jets})$, $H_T\equiv|\sum_{\rm jets}\vec{p}_T|$, $P_T^{\rm trk}\equiv|\sum_{\rm trk}\vec{p}_T|$, $P_{T,2}^{\rm trk}\equiv|\sum_{\rm trk\ in\ jets}\vec{p}_T|$, estimate fake background
- apply b-tagging, check w/ single-tag sample
- search for resonance in the m_{jj} distribution
- set limits

Cross-checks using $Z \rightarrow \ell^+ \ell^-$ samples

$Z \rightarrow e^+e^-$: jet radiation

 $R \equiv \sigma(Z + b)/\sigma(Z + jet)$: sensitive to b-quark density in proton (not very well constrained):

 $\begin{array}{l} (R=0.021\pm0.004(\mathrm{stat.})^{+0.002}_{-0.003}(\mathrm{syst.})) \\ \mathrm{compatible~with~(and~of~similar~accuracy~to)} \\ \mathrm{NLO~prediction~} (R=0.018\pm0.004) \end{array}$

MSSM Higgs Boson Searches

Knowing the b-quark density in the proton is useful for other purposes, too!

In the MSSM:

- two Higgs doublets, VEVs $v_u/v_d \equiv \tan \beta$
- five Higgs bosons: h, H, A, H[±]
- for large $\tan \beta$ (theoretical prejudice):
 - A and (h or H) degenerate in mass
 - coupling of these two Higgs bosons to down-type fermions $\sim \tan \beta$ times SM couplings

from [hep-ph/0010338] 250 maximal mixing μ = -200 GeV M_{SUSY} = 1 TeV H[±] (---) H (---) h (----) 100 tan β = 3

Relatively straightforward signatures: SM-like but strongly enhanced for $\tan \beta \gg 1$

m, (GeV)

MSSM h(bb)b

Use enhanced hbb coupling to look for increased h/A production from initial state b quarks. Signature: resonance in leading jets' $m_{\rm jj}$ in bbb events

DØ analysis: data driven

- three-jet events w/ $E_{T,1} > 35$ GeV, $E_{T,2} > 20$ GeV, $E_{T,3} > 15$ GeV
- start from m_{jj} distribution in double-tagged events (dominated by $b\bar{b}jj$)
- tag 3rd jet, compare w/ prediction from application of mis-tag rate to double-tagged distribution

• derive cross section and $\tan \beta$ limits as function of $m_{\rm A}$

MSSM h(bb)b

Use enhanced hbb coupling to look for increased h/A production from initial state b quarks. Signature: resonance in leading jets' $m_{\rm jj}$ in bbb events

DØ analysis: data driven

- three-jet events w/ $E_{\rm T,1} >$ 35 GeV, $E_{\rm T,2} >$ 20 GeV, $E_{\rm T,3} >$ 15 GeV
- start from m_{jj} distribution in double-tagged events (dominated by $b\bar{b}jj$)
- tag 3rd jet, compare w/ prediction from application of mis-tag rate to double-tagged distribution

• derive cross section and $\tan \beta$ limits as function of $m_{\rm A}$

MSSM h(bb)b

Use enhanced hbb coupling to look for increased h/A production from initial state b quarks. Signature: resonance in leading jets' $m_{\rm jj}$ in bbb events

DØ analysis: data driven

- three-jet events w/ $E_{T,1} > 35$ GeV, $E_{T,2} > 20$ GeV, $E_{T,3} > 15$ GeV
- start from $m_{\rm jj}$ distribution in double-tagged events (dominated by $b\bar{b}{\rm jj}$)
- tag 3rd jet, compare w/ prediction from application of mis-tag rate to double-tagged distribution

• derive cross section and $\tan \beta$ limits as function of m_{Δ}

Despite the large branching $h/A \rightarrow b\bar{b}$ ratio, the analysis of this final state suffers from a large multi-jet background. Alternative: $gg/b\bar{b} \rightarrow h/A \rightarrow \tau^+\tau^-$

- ullet clean reconstruction of hadronic au decay
- apply cut on $\hat{H}_{\mathsf{T}} \equiv |\vec{p}_{\mathsf{T},1}^{\mathsf{vis}}| + |\vec{p}_{\mathsf{T},2}^{\mathsf{vis}}| + \not\!\!E_{\mathsf{T}}$, require $\not\!\!E_{\mathsf{T}}$ to be consistent $\mathbf{w}/\ \tau$ decays
- search for resonance in $m_{\text{vis}} \equiv m(\ell, \tau_{\text{vis}}, \vec{\not}_{\text{T}})$ distribution
- extract cross section limit as function of m_A
- convert to limits in $(m_A, \tan \beta)$ plane

Despite the large branching $h/A \rightarrow b\bar{b}$ ratio, the analysis of this final state suffers from a large multi-jet background. Alternative: $gg/b\bar{b} \rightarrow h/A \rightarrow \tau^+\tau^-$

- \bullet clean reconstruction of hadronic τ decay
- apply cut on $\hat{H}_{T} \equiv |\vec{p}_{T,1}^{\text{vis}}| + |\vec{p}_{T,2}^{\text{vis}}| + \not\!\!E_{T}$, require $\not\!\!E_{T}$ to be consistent w/ τ decays
- search for resonance in $m_{\text{vis}} \equiv m(\ell, \tau_{\text{vis}}, \vec{\not}_{\mathsf{T}})$ distribution
- extract cross section limit as function of m_A
- convert to limits in $(m_A, \tan \beta)$ plane

Despite the large branching $h/A \rightarrow b\bar{b}$ ratio, the analysis of this final state suffers from a large multi-jet background. Alternative: $gg/b\bar{b} \rightarrow h/A \rightarrow \tau^+\tau^-$

- \bullet clean reconstruction of hadronic τ decay
- apply cut on $\hat{H}_{\mathsf{T}} \equiv |\vec{p}_{\mathsf{T},1}^{\mathsf{vis}}| + |\vec{p}_{\mathsf{T},2}^{\mathsf{vis}}| + \not\!\!E_{\mathsf{T}}$, require $\not\!\!E_{\mathsf{T}}$ to be consistent w/τ decays
- search for resonance in $m_{\text{vis}} \equiv m(\ell, \tau_{\text{vis}}, \vec{\not}_{\mathsf{T}})$ distribution
- extract cross section limit as function of m_A
- convert to limits in $(m_A, \tan \beta)$ plane

Despite the large branching $h/A \rightarrow b\bar{b}$ ratio, the analysis of this final state suffers from a large multi-jet background. Alternative: $gg/b\bar{b} \rightarrow h/A \rightarrow \tau^+\tau^-$

- \bullet clean reconstruction of hadronic τ decay
- apply cut on $\hat{H}_{\mathsf{T}} \equiv |\vec{p}_{\mathsf{T},1}^{\mathsf{vis}}| + |\vec{p}_{\mathsf{T},2}^{\mathsf{vis}}| + \not\!\!E_{\mathsf{T}}$, require $\not\!\!E_{\mathsf{T}}$ to be consistent w/τ decays
- search for resonance in $m_{\text{vis}} \equiv m(\ell, \tau_{\text{vis}}, \vec{\not}_{\mathsf{T}})$ distribution
- extract cross section limit as function of m_A
- convert to limits in $(m_A, \tan \beta)$ plane

Despite the large branching $h/A \rightarrow b\bar{b}$ ratio, the analysis of this final state suffers from a large multi-jet background. Alternative: $gg/b\bar{b} \rightarrow h/A \rightarrow \tau^+\tau^-$

- \bullet clean reconstruction of hadronic τ decay
- apply cut on $\hat{H}_{\mathsf{T}} \equiv |\vec{p}_{\mathsf{T},1}^{\mathsf{vis}}| + |\vec{p}_{\mathsf{T},2}^{\mathsf{vis}}| + \not\!\!E_{\mathsf{T}}$, require $\not\!\!E_{\mathsf{T}}$ to be consistent $\mathbf{w}/\ \tau$ decays
- search for resonance in $m_{\text{vis}} \equiv m(\ell, \tau_{\text{vis}}, \vec{\not}_{\mathsf{T}})$ distribution
- extract cross section limit as function of m_A
- convert to limits in $(m_A, \tan \beta)$ plane

High-Mass Higgs Boson Searches

When $m_{\rm H} > 135$ GeV, branching ratio to $W^{\pm}W^{\mp(*)}$ becomes dominant

 \Rightarrow leptonic decay modes allow to use gg $\rightarrow H$ production.

However, this requires good knowledge of the non-resonant WW background, which itself has a small production cross section ⇒ first need to measure this process accurately.

DØ analysis:

- require $\ell^{\pm}\ell'^{\mp}$ with $p_{\mathrm{T},1(2)}>20(15)$ GeV
- require $\not\!\!E_{\rm T} >$ 30, 20, 40 GeV for ee, e μ , $\mu\mu$ final states

Further Z/γ^* suppression through cuts specific for final states. For ee:

• suppress jet mis-measurement: $H_{\rm T} < 50$ GeV and

$$\frac{\cancel{\cancel{E}_{\mathsf{T}}}}{\sqrt{\sum_{j}\left((\cancel{E_{j}})^{1/2}\sin\theta_{j}\cos\Delta\phi(j,\cancel{E})\right)^{2}}} > 15$$

ullet require $|m_{
m ee}-m_{
m Z}|>15$ GeV

Preliminaries: WW Cross Section Measurement

For $\mu\mu$:

- 20 GeV $< m_{\mu\mu} < 80$ GeV
- $H_{\rm T} < 100 \; {\rm GeV}$

For $e\mu$:

- ₱⊤ significance cut as for ee
- $m_{\rm T}^{\rm e}, m_{\rm T}^{\mu} > 20$ GeV:

$$m_{\mathrm{T}}^{\ell} \equiv \sqrt{2p_{\mathrm{T}}^{\ell} E_{\mathrm{T}} (1 - \cos \Delta \phi(\ell, E_{\mathrm{T}}))}$$

Result:
$$\sigma(p\bar{p} \to W^+W^-) = 13.8^{+4.3}_{-3.8}(\text{stat.})^{+1.2}_{-0.9}(\text{syst.}) \pm 0.9(\text{lum.}) \text{ pb}$$
 CDF: $\sigma(p\bar{p} \to W^+W^-) = 24.2 \pm 6.9(\text{stat.})^{+5.2}_{-5.7}(\text{syst.}) \pm 1.5(\text{lum.}) \text{ pb}$ SM: $\sigma(p\bar{p} \to W^+W^-) = 12.0$ –13.5 pb

Preliminaries: WW Cross Section Measurement

For $\mu\mu$:

- 20 GeV $< m_{\mu\mu} <$ 80 GeV
- $H_{\rm T} < 100 \; {\rm GeV}$

For $e\mu$:

- ₱ #T significance cut as for ee
- $m_{\rm T}^{\rm e}, m_{\rm T}^{\mu} > 20$ GeV:

$$m_{\mathsf{T}}^{\ell} \equiv \sqrt{2p_{\mathsf{T}}^{\ell} \not\!\! E_{\mathsf{T}} (1 - \cos \Delta \phi(\ell, \not\!\! E_{\mathsf{T}}))}$$

Result:
$$\sigma(p\bar{p} \to W^+W^-) = 13.8^{+4.3}_{-3.8}(\text{stat.})^{+1.2}_{-0.9}(\text{syst.}) \pm 0.9(\text{lum.}) \text{ pb}$$
 CDF: $\sigma(p\bar{p} \to W^+W^-) = 24.2 \pm 6.9(\text{stat.})^{+5.2}_{-5.7}(\text{syst.}) \pm 1.5(\text{lum.}) \text{ pb}$ SM: $\sigma(p\bar{p} \to W^+W^-) = 12.0$ –13.5 pb

Higgs searches largely build on WW cross section measurements. However, the nice possibility to look for resonances doesn't exist

⇒ exploit spin correlations in decays.

In the DØ case (NB slight mods. for $\mu\mu$):

- (slightly) relax cuts on $p_{\mathsf{T},\ell}$, $\not\!\!E_{\mathsf{T}}$
- $m_{\text{H}}/2 + x < p_{\text{T},1} + p_{\text{T},2} + \not\!\!\!E_{\text{T}} < m_{\text{H}},$ $x = 10 \ (20) \ \text{GeV for } \mu\mu \ (\text{ee, e}\mu)$
- $m_{\ell\ell} < m_{\rm H}/2$
- $\Delta \phi_{\ell\ell} < 2$
- $ullet m_{
 m H}/2 < m_{
 m T}^{\ell\ell} < m_{
 m H} 10 \,\,{
 m GeV}$
- ullet extract cross section limits as function of $m_{
 m H}$

Higgs searches largely build on WW cross section measurements. However, the nice possibility to look for resonances doesn't exist

⇒ exploit spin correlations in decays.

In the DØ case (NB slight mods. for $\mu\mu$):

- (slightly) relax cuts on $p_{T,\ell}$, $\not\!\!E_T$
- $m_{\rm H}/2 + x < p_{\rm T,1} + p_{\rm T,2} + \not\!\!E_{\rm T} < m_{\rm H}$, x = 10 (20) GeV for $\mu\mu$ (ee, e μ)
- $m_{\ell\ell} < m_{\rm H}/2$
- $\Delta \phi_{\ell\ell} < 2$
- $m_{
 m H}/2 < m_{
 m T}^{\ell\ell} < m_{
 m H} 10 \; {
 m GeV}$
- extract cross section limits as function of m_H

Higgs searches largely build on WW cross section measurements. However, the nice possibility to look for resonances doesn't exist

⇒ exploit spin correlations in decays.

In the DØ case (NB slight mods. for $\mu\mu$):

- (slightly) relax cuts on p_{T,ℓ}, ∉_T
- $m_{\rm H}/2 + x < p_{\rm T,1} + p_{\rm T,2} + \not\!\!E_{\rm T} < m_{\rm H}$, x = 10 (20) GeV for $\mu\mu$ (ee, e μ)
- $m_{\ell\ell} < m_{\rm H}/2$
- $\Delta \phi_{\ell\ell} < 2$
- $m_{
 m H}/2 < m_{
 m T}^{\ell\ell} < m_{
 m H} 10 \; {
 m GeV}$
- extract cross section limits as function of m_H

Higgs searches largely build on WW cross section measurements. However, the nice possibility to look for resonances doesn't exist

⇒ exploit spin correlations in decays.

In the DØ case (NB slight mods. for $\mu\mu$):

- (slightly) relax cuts on $p_{T,\ell}$, $\not\!\!E_T$
- $m_{\rm H}/2 + x < p_{\rm T,1} + p_{\rm T,2} + \not\!\!E_{\rm T} < m_{\rm H}$, x = 10 (20) GeV for $\mu\mu$ (ee, e μ)
- $m_{\ell\ell} < m_{\rm H}/2$
- $\Delta \phi_{\ell\ell} < 2$
- $m_{
 m H}/2 < m_{
 m T}^{\ell\ell} < m_{
 m H} 10 \; {
 m GeV}$
- extract cross section limits as function of m_H

$\overline{\mathsf{H}\!\!\to\!\!\mathsf{W}^\pm}\mathsf{W}^{\pm(*)}X$

Alternative approach taken in nice analysis by CDF: study this same decay but in associated production \Rightarrow like-sign dileptons

- require $p_{T,1(2)} > 20(6)$ GeV
- estimate lepton "fake rate", photon conversion rate
- cross-check w/ agreement in variables not very sensitive to signal
- define signal region and search for signal
- extract cross section limits

Alternative approach taken in nice analysis by CDF: study this same decay but in associated production \Rightarrow like-sign dileptons

- require $p_{T,1(2)} > 20(6)$ GeV
- estimate lepton "fake rate", photon conversion rate
- cross-check w/ agreement in variables not very sensitive to signal
- define signal region and search for signal
- extract cross section limits

$\mathsf{H}{ ightarrow}\mathsf{W}^{\pm}\mathsf{W}^{\pm(*)}X$

Alternative approach taken in nice analysis by CDF: study this same decay but in associated production ⇒ like-sign dileptons

- require $p_{T,1(2)} > 20(6)$ GeV
- estimate lepton "fake rate", photon conversion rate
- cross-check w/ agreement in variables not very sensitive to signal
- define signal region and search for signal
- extract cross section limits

Alternative approach taken in nice analysis by CDF: study this same decay but in associated production \Rightarrow like-sign dileptons

- require $p_{T,1(2)} > 20(6)$ GeV
- estimate lepton "fake rate", photon conversion rate
- cross-check w/ agreement in variables not very sensitive to signal
- define signal region and search for signal
- extract cross section limits

Doubly-Charged Higgs Bosons

While the exact symmetry breaking mechanism chosen by Nature has not been identified...consider alternative models.

In the left-right symmetric model, $H_{L,R}^{\pm\pm}$ bosons couple to left/right-handed fermions. At the Tevatron, they would be predominantly produced in pairs $(p\bar{p}\to Z/\gamma^*\to H^{++}H^{--})$ and (for relatively light $H^{\pm\pm}$) decay predominantly to charged leptons.

CDF Search strategy: attempt to identify only a single Higgs boson \Rightarrow a signature like that of the $H{\rightarrow}W^{\pm}W^{\pm(*)}X$ search, apart from the resonant dilepton invariant mass spectrum.

- ullet require two isolated leptons (e, μ)
- search in 10 GeV mass window around hypothesized mass, set cross section limits
- set lower limits on mass (assuming exclusive decay to given final state)

(similar DØ analysis, using only $\mu\mu$)

Perspectives

The Tevatron Higgs Search programme is now in full swing.

- "basics" (lepton ID, b-tagging, ∉_T) understood, but no use has yet been made of "advanced analysis techniques"
- present limits substantially above SM predictions
- ... but close to probing other models
- also, Tevatron integrated luminosity is increasing rapidly
 - these analyses: $\mathcal{O}(200 \text{ pb}^{-1})$
 - now on tape: $\mathcal{O}(800 \text{ pb}^{-1})$

Perspectives

The Tevatron Higgs Search programme is now in full swing.

- "basics" (lepton ID, b-tagging, ∉_T) understood, but no use has yet been made of "advanced analysis techniques"
- present limits substantially above SM predictions
- ... but close to probing other models
- also, Tevatron integrated luminosity is increasing rapidly
 - these analyses: $\mathcal{O}(200 \text{ pb}^{-1})$
 - now on tape: $\mathcal{O}(800 \text{ pb}^{-1})$

Stay tuned!