Neutrino Phenomenology: Stephen Parke Fermilab WIN'05 Delphi

Bevon

edictions/Mode

"The" ν Standard Model

- 3 light ($m_i < 1 \text{ eV}$) Majorana Neutrinos: \Rightarrow only 2 δm^2
- Only Active flavors (no steriles): $e, \ \mu, \ au$
- Unitary Mixing Matrix: 3 angles $(\theta_{12}, \theta_{23}, \theta_{13})$ 1 Dirac phase (δ) , 2 Majorana phases (α_2, α_3)

 $|\nu_e, \nu_\mu, \nu_\tau\rangle_{flavor}^T = U_{\alpha i} |\nu_1, \nu_2, \nu_3\rangle_{mass}^T$

$$U_{\alpha i} = \begin{pmatrix} 1 & & \\ & c_{23} & s_{23} \\ & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} & c_{13} & & s_{13}e^{-i\delta} \\ & & 1 & \\ & -s_{13}e^{i\delta} & & c_{13} \end{pmatrix} \begin{pmatrix} & c_{12} & s_{12} \\ & -s_{12} & c_{12} \\ & & 1 \end{pmatrix} \begin{pmatrix} & 1 & \\ & e^{i\alpha} \\ & & e^{i\beta} \end{pmatrix}$$

Atmos. L/E $\mu \rightarrow \tau$ Atmos. L/E $\mu \leftrightarrow e$ Solar L/E $e \rightarrow \mu, \tau$ $0\nu\beta\beta$ decay
500km/GeV 15km/MeV

In oscillation phenomena,

the phases α , β are unobservable $(U_{\alpha i}U^*_{\beta i})$ as well as the value of m_{lite} (δm^2) .

 $\ln\,0\nu\beta\beta\,\,{\rm decay}$

only a combination of the phases α , β observable in this CP conserving phenomena.

 $A_{\rm NC} \equiv 0.$ $A_{ES} \approx 0.7 A_{CC}$ $A_{\rm CC} = -0.015 \pm 0.058 \pm 0.027$ $A_{\rm ES} = 0.070 \pm 0.197 \pm 0.054.$

SK: (ES)

 $A_{ES} = -1.8 \pm 1.6 (\text{stat})^{+1.3}_{-1.2} (\text{syst})\%$

D/N asym -2 +/-1% Holanda+Smirnov hep-ph/0212270

Physics of LMA:

⁸Boron Neutrinos

$$\frac{CC}{NC} = f_1 \cos^2 \theta_{\odot} + f_2 \sin^2 \theta_{\odot}$$

where f_1 and $f_2 = 1 - f_1$ are the fractions of ν_1 and ν_2 of the ⁸*B* neutrinos arriving at the earth, weighted by the energy response of the SNO detector.

In MSW-LMA region $f_2 = \langle \sin^2 \theta_N \rangle \gg f_1 = \langle \cos^2 \theta_N \rangle$ (Daytime CC/NC) (two flavor analysis)

$$\frac{CC}{NC} = \sin^2 \theta_{\odot} + f_1 \cos 2\theta_{\odot}$$
$$0.358 = 0.31 + f_1 \star 0.38$$

 $\Rightarrow f_1 pprox 10\%$ ⁸B Neutrinos that SNO is sensitive to are about 90% ν_2 !!!

thus SNO is measuring the u_e fraction of $u_2\equiv\sin^2 heta_\odot$

(upto $\sim 10\%$ corrections)

Mixing
Summary:
(+ Unitarity) $\sin^2 \theta_{12} = \frac{1}{3}(1 - 4\sigma)$
 $\sin^2 \theta_{13} = \frac{1}{2}(1 - \lambda)$
 $\sin^2 \theta_{13$

$$U_{\alpha i} = \begin{pmatrix} \sqrt{\frac{2}{3}}(1+\sigma) & \sqrt{\frac{1}{3}}(1-2\sigma) & \epsilon e^{-i\delta} \\ -\sqrt{\frac{1}{6}}(1-2\sigma+\lambda) - \sqrt{\frac{1}{3}} \epsilon e^{i\delta} & \sqrt{\frac{1}{3}}(1+\sigma+\lambda) - \sqrt{\frac{1}{6}} \epsilon e^{i\delta} & \sqrt{\frac{1}{2}}(1-\lambda) \\ \sqrt{\frac{1}{6}}(1-2\sigma-\lambda) - \sqrt{\frac{1}{3}} \epsilon e^{i\delta} & -\sqrt{\frac{1}{3}}(1+\sigma-\lambda) - \sqrt{\frac{1}{6}} \epsilon e^{i\delta} & \sqrt{\frac{1}{2}}(1+\lambda) \end{pmatrix}$$

at $\sigma=\lambda=0$

$$U_{\alpha i}|^{2} \approx \begin{pmatrix} \frac{2}{3} & \frac{1}{3} & \epsilon^{2} \\ \frac{1}{6} & \frac{1}{3} & \frac{1}{2} \\ \frac{1}{6} & \frac{1}{3} & \frac{1}{2} \end{pmatrix} + \frac{\sqrt{2}}{3} \epsilon \cos \delta \begin{pmatrix} 1 & -1 \\ -1 & 1 \\ -1 & 1 \end{pmatrix}$$

 $1.9\times 10^{-3} eV^2 < \! |\delta m^2_{32}| < 3.0\times 10^{-3} eV^2$

Fractional Flavor Content

two small quantities $\sin^2 \theta_{13} < 0.04$ and $\frac{\delta m_{21}^2}{\delta m_{32}^2} \approx 0.03$

Within ν Standard Model

The Big Questions to be Addressed are

ν_e fraction of ν₃: - sin² θ₁₃
mass hierarchy: - sign of δm²₃₁
CP violation: - sin δ ≠ 0

Other Questions

•
$$\theta_{23} \leftrightarrow \frac{\pi}{2} - \theta_{23}$$

• sign of
$$\cos \delta = \pm \sqrt{1 - \sin^2 \delta}$$

Quest for ν_e fraction in ν_3 : $\sin^2 \theta_{13}$

- Current LBL (MINOS)
- Atmospheric Neutrinos
- Low and High Energy Solar Neutrinos
- Supernova Neutrinos
- Short Baseline Reactor (Double Chooz, ...)
- Future Long Baseline (T2K, NuMI, BNL2?, ...)
- Neutrino Factories
- Beta Beams

Hierarchy Quest: sign of δm_{31}^2

- $0\nu\beta\beta$ decay
- Atmospheric Neutrinos
- Supernova Neutrinos
- Future Long Baseline (NuMI, NuMI+T2K, BNL2? ...)
- Neutrino Factories (hi-γ Beta Beams)

Quest for CP Violation: $\sin \delta$

- Future Long Baseline with Superbeams (T2HK, NuMI, BNL2? ...)
- Neutrino Factories
- Beta Beams

Quest for ν_e fraction in ν_3 : $\sin^2 \theta_{13}$

No indication yet of nonzero θ_{13} from atmospheric, solar and terrestrial v

$$\begin{split} \underline{\nu_{\mu} \rightarrow \nu_{e}} \\ P_{\mu \rightarrow e} &= \Big| \sum_{j=1}^{3} U_{\mu j}^{*} \ U_{e j} e^{-im_{j}^{2}L/2E} \Big|^{2} \\ & \text{Elimate } U_{\mu 1}^{*} U_{e 1} \\ & \text{using unitarity of U.} \\ & \text{Use } \Delta_{i j} = \delta m_{i j}^{2} L/4E = 1.27 \delta m_{i j}^{2} L/E \\ & P_{\mu \rightarrow e} &= \Big| \ 2U_{\mu 3}^{*} U_{e 3} \sin \Delta_{31} e^{-i\Delta_{32}} + 2U_{\mu 2}^{*} U_{e 2} \sin \Delta_{21} \Big|^{2} \end{split}$$

Square of Atmospheric+Solar amplitude: $U_{\mu3}^*U_{e3} = s_{23}s_{13}c_{13}e^{\mp i\delta}$ for ν and $\bar{\nu}$: Approx. $U_{\mu2}^*U_{e2} \approx c_{23}s_{12}c_{12} + \mathcal{O}(s_{13})$:

 $P_{\mu \to e} \approx \left| 2s_{23}s_{13}c_{13}\sin\Delta_{31}e^{-i(\Delta_{32}\pm\delta)} + 2c_{23}s_{12}c_{12}\sin\Delta_{21} \right|^2$

Interference term different for ν and $\bar{\nu}$:

CP violation !!! provided $\Delta_{32} \neq 0$

$$\begin{array}{c}
\nu_{\mu} \rightarrow \nu_{e} \quad \text{with MATTER} \\
P_{\mu \rightarrow e} \approx |\sqrt{P_{atm}}e^{-i(\Delta_{32}\pm\delta)} + \sqrt{P_{sol}}|^{2} \\
\text{where } \sqrt{P_{atm}} = \sin\theta_{23}\sin2\theta_{13} \frac{\sin(\Delta_{31}\mp aL)}{(\Delta_{31}\mp aL)} \Delta_{31} \\
\text{and } \sqrt{P_{sol}} = \cos\theta_{23}\sin2\theta_{12} \frac{\sin(aL)}{(aL)} \Delta_{21} \\
\end{array}$$

$$\begin{array}{c}
a = G_{F}N_{e}/\sqrt{2} = (4000 \ km)^{-1}, \\
\pm = sign(\delta m_{31}^{2}) \\
\Delta_{ij} = |\delta m_{ij}^{2}|L/4E \\
\end{array}$$

$$\begin{array}{c}
\left\{\delta m^{2}\sin2\theta\right\} \text{ is invariant} \\
\sin\Delta_{31} \Rightarrow \left(\frac{\Delta_{31}}{\Delta_{31}\mp aL}\right)\sin(\Delta_{31}\mp aL) \\
\sin\Delta_{21} \Rightarrow \left(\frac{\Delta_{21}}{\Delta_{21}\mp aL}\right)\sin(\Delta_{21}\mp aL) \\
\sin\Delta_{32} \Rightarrow \sin\Delta_{32}
\end{array}$$

$$\begin{array}{c}
\text{CP violation !!!} \\
A = G_{F}N_{e}/\sqrt{2} = (4000 \ km)^{-1}, \\
\pm = sign(\delta m_{31}^{2}) \\
\Delta_{ij} = |\delta m_{ij}^{2}|L/4E \\
\end{array}$$

Matter effects are IMPORTANT when $sin(\Delta \mp aL) \neq (\Delta \mp aL)$.

Minakata+Nunokawa hep-ph/0108085

Solving Degeneracies:

Variable Measured	$\frac{LBL}{\nu_{\mu} \to \nu_{\mu}}$	$\begin{array}{c} LBL \\ \nu_{\mu} \to \nu_{e} \\ \bar{\nu}_{\mu} \to \bar{\nu}_{e} \end{array}$	$\frac{\text{Reactor}}{\bar{\nu}_e \rightarrow \bar{\nu}_e}$	Comments	
$ \Delta m_{22}^2 $	Y	n	n	magnitude but not sign	
$\sin^2 2\theta_{23}$	Y	n	n	$\theta_{23} \leftrightarrow \frac{\pi}{2} - \theta_{23}$ ambiguous	
$\sin^2 heta_{13}$	n	n	Y	direct measurement	
$\sin^2 heta_{23}\sin^2 heta_{13}$	n	Y	n	combination of $ heta_{23}$ and $ heta_{13}$	
$sign(\Delta m^2_{32})$	n	Y	n	via matter effects	
$\cos heta_{23}\sin\delta_{CP}$	n	Y	n	CP violation	
$\cos heta_{23}\cos\delta_{CP}$	n	?	n	extremely difficult	

Neutrinoless double beta decay

- Most sensitive (terrestrial) probe of the absolute neutrino mass
- Unique way of proving Majorana nature of v
- If Majorana v is the only mechanism, ===>

Petcov // talk

Beyond the ν Standard Model

- Sterile Neutrinos, (LSND/miniBOONE) e.g. 3+n models
- Dirac Neutrinos
- CP and/or T violation requiring more than one phase
- CPT violation
- Exotic interactions: magnetic moments, addition matter interactions, . . .

Light Sterile Neutrinos: LSND/miniBOONE

- Various schemes are proposed motivated by the LSND data, which include:
- 2+2 sterile-active scheme
- 3+1
- 3+2
- CPT violation
- Sterile + CPT violation
-

LSND: $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ from μ^{-} decay. miniBOONE: $\nu_{\mu} \rightarrow \nu_{e}$ from π^{+} decay.

to definitively exclude LSND in the event that MiniBooNE does not see a signal, we need 1x10²¹ POT

Four Neutrino Scenarios

10-3

10-2

sin²20_{LSND}

- 2+2 scheme: strongly disfavored by atmospheric and solar data (99.95% CL)
- 3+1 scheme: constrained by SBL experiments, allowed only marginally
 - (Maltoni, Schwetz Tortola, Valle hep-ph/0209368)

3+2 Active-Sterile Scenario

FIG. 6: Allowed ranges in $(\Delta m^2_{41}, \Delta m^2_{51})$ space for (3+2) models, for the combined NSBL+LSND analysis, assuming statistical compatibility between the NSBL and LSND data sets. The star indicates the best-fit point, the grey-shaded regions indicate the 90, 95, 99% CL allowed regions. Only the $\Delta m^2_{51} > \Delta m^2_{41}$ region is shown; the complementary region $\Delta m^2_{41} > \Delta m^2_{51}$ can be obtained by interchanging Δm^2_{41} with Δm^2_{51} .

- Best-fit point utilizes a "dip" in sensitivity of SBL experiments (Sorel-Conrad-Shaevitz, hep-ph/0305255)
- Constrained by disappearance measurement in the Mini-BOONE (When?)

Light Sterile Neutrinos and/or Dirac Neutrinos Unexpected!!!

• CP and/or T violation requiring more than one phase

Predictions from Models:

Selected SO(10) Models and θ_{13} Predictions

Model	(Level) Flavor Sym.	Texture	tanβ	$\sin^2 2\theta_{13}$
AB	(4) $U(1) \times Z_2 \times Z_2$	Lopsided	\sim	0.0008-0.00
ABMSV	(1) Min. eff. ops.	Sym (II)	?	0.10
BO	(1) Min. eff. ops.	Sym	?	0.004-0.008
BKOT	(1) Min. eff. ops.	Sym	?	0.0004-0.01
BPW	() U(1) eff. ops.	Sym (II)	low	?
CM	(4) $U(2) \times (Z_2)^3$	Sym	10	0.09
FKO	(1) Min. eff. ops.	Sym	4	0.1
GMN	(1) Min. eff. ops.	Sym(II)	10	0.10
KM	(2) $SU() \times U(1)$	Lopsided	small	~ 0.19
KRV-S	(4) $SU() \times Z_2 \times U(1)_A$	Sym/Asym	?	0.02
Μ	(2) $U(1)_A \times Z_2$	Lopsided		~ 0.19

Albright, Barr	$\sin^2 2 heta_{atm} \simeq 0.99$
Aulakh, Bajc, Melfo, Senjanovic, Vissani	not spelled out
Bando, Obara	
Bando, Kaneko, Obaro, Tanimoto	
Babu, Pati, Wilczek	
Chen, Mahanthappa	$\sin 2\beta = 0.74,$
	δ_{CKM} \sim $^{\circ}$
Fukuyama, Kikuchi, Okada	$\Delta m_{sol}^2 / \Delta m_{atm}^2 = 0.188$
Goh, Mohapatra, Ng	$\sin^2 2\theta_{atm} \leq 0.92,$
	$SIT^{-}2\theta_{12} \ge 0.9$
Kitano, Mimura	satisfies LMA mixing?
King, Ross, Velasco-Sevilla	
Maekawa	satisfies LMA mixing?
	Albright, Barr Aulakh, Bajc, Melfo, Senjanovic, Vissani Bando, Obara Bando, Kaneko, Obaro, Tanimoto Babu, Pati, Wilczek Chen, Mahanthappa Fukuyama, Kikuchi, Okada Goh, Mohapatra, Ng Kitano, Mimura King, Ross, Velasco-Sevilla Maekawa

Albright'04

QUARK-LEPTON COMPLEMENTARITY; A REVIEW

	$\Delta \sin^2 \theta_{12}$	$\sin^2 2\theta_{13}$	$D_{23} \equiv \frac{1}{2} - s_{23}^2$	$J_{lep}/\sin\delta$
Scenarios			_	
neutrino bi-maximal	0.051	0.10 ± 0.032	0.025	$1.5 imes 10^{-3}$
lepton bi-maximal	-6×10^{-4}	2×10^{-3}	0.035^{*}	5×10^{-3}
hybrid bi-maximal	1.4×10^{-4}	$3.3 imes 10^{-4}$	0.04^{*}	2.1×10^{-3}
neutrino max+large	0.057 ± 0.023	0.10 ± 0.032	SK bound	$\leq 6.8\times 10^{-3}$
lepton max+large	-6×10^{-4}	2×10^{-3}	SK bound	$\leq 5 imes 10^{-3}$
hybrid max+large	1.4×10^{-4}	3.3×10^{-4}	SK bound	$\leq 2.1\times 10^{-3}$
single maximal	0.015	0.034	0.06 - 0.16	9.1×10^{-3}

Table 1: Predictions to the deviation from the QLC relation $\Delta \sin^2 \theta_{12}$, $\sin^2 2\theta_{13}$, the deviation parameter from the maximal 2-3 mixing D_{23} , and the leptonic Jarlskog factor J_{lep} for different scenarios. The uncertainties indicated with \pm come from the experimental uncertainty of the atmospheric mixing angle θ_{23} . Whenever there exist uncertainty due to the CP violating phase δ we assume that $\cos \delta = 0$ to obtain an "average value". For the quantities which vanish at $\cos \delta = 0$ (indicated by *) the numbers are calculated by assuming $\cos \delta = 1$ "SK bound" implies the whole region allowed by the Super-Kamiokande: $|D_{23}| \leq 0.16$. The numbers for the last row (single-maximal case) are computed with the assumed values of $\theta_{23}^l = \theta_C$ and $\theta_{23}^\nu = 27^\circ$.

Minakata hep-ph/0505262

Summary + Conclusions

Tremendous progress has been made in the last 10 years, Many hard questions left (the low olives have been picked):

- # of light sterile neutrinos
- Majorana v Dirac
- absolute mass, m_{lite}
- fraction ν_e in m_3
- mass hierarchy
- CP violation
- mass and mixing models

BUT watch out for SURPRISES, THE UNEXPECTED...

Summary + Conclusions (conti)

- miniBOONE confirms LSND osc.
- inverted hierarchy
- Dirac neutrinos
- degenerate masses
- new neutrino interactions
- STHNTO

Matter effects are IMPORTANT when $sin(\Delta \mp aL) \neq (\Delta \mp aL)$.

