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Neutrinos: View from the
Center of the Earth

 Today we'll choose a broad overview

— rather than a focused study in depth

— neutrino people: this is for the energy frontier folks.

please be patient! you’ll get your turn later in the week
! : |
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The Broadest Goals

* Understand mixing of neutrinos i@
— a non-mixing? CP violation? ‘.

* Understand neutrino mass
— absolute scale and hierarchy §

* Understand v interactions --
. : ~
— new physics? new properhes?\Qg
» Use neutrinos as probes

— nucleon, earth, sun*, supernovae* v— O

* fascinating topics, but outside the
scope of this talk. See Dave Wark...
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Neutrino Mass Eigenstates

* The building blocks of what we know

— #vs with weak couplings:
« W*: 3 observed (DONUT)
. 7% exactly 3 (LEP, SLD)

— Solar neutrino oscillation: ..., SNO, KAMLAND
— Atmospheric neutrinos: ..., Super-K, K2K
— Puzzles and null results: LSND, CHOO/Z

 LSND “puzzle” is requirement of more neutrinos
« CHOO/Z/Palo Verde suggest one small mixing
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Qualitative Questions

* The questions facing us now are
fundamental, and not simply a matter of
“measuring oscillations better”

 Examples:
— Are there more than three neutrinos?
— What is the hierarchy of masses?

— Can neutrinos contribute significantly to the
mass of the universe?

— Is there CP violation in neutrino mixings?
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The Broadest Goals

* Understand mixing of neutrinos
—a non-mixing? CP violation”?
* Understand neutrino mass
hierarchy
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What We Hope to Learn From

Neutrino Oscillations
 Near future

— validation of three generation picture
 confirm or disprove LSND oscillations

* precision tests of “atmospheric” mixing at
accelerators

 Farther Future

— neutrino mass hierarchy, CP violation”?
* Precision at reactors

* sub - multi MegaWatt sources
10 > 100 - 1000 kTon detectors
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Minimal Oscillation Formalism

* If neutrino mass eigenstates: v,, v,, v,, etc.
* ... are not flavor eigenstates: v, Vi Vs
« ... then one has, e.qg.,
® (v, cosd sind (v, take only two
generations
—sin@ cosd

COSV‘V +Sm/‘ different
\/\M masses
alter time
\/_\/W evolution

time ,
—sin /\v +cos77‘
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Oscillation Formalism (cont'd)

o So, still for two generatlons . , appropriate units
(m - m; )L give the usual
P(v, > v,)=sin > 20sin’ numerical factor
4E 1.27 GeV/km-eV?

» Oscillations require mass differences

» Oscillation parameters are mass-squared differences,
dm2, and mixing angles, 0.

* One correction to thls IS matter . changes 0, L dep.

A e
\/ Wolfenstein, PRD (1978)
wh 5in220, =, N 20

Sin® 20 + (£Xx — c0s20)°
& T~V

L, =Lx \/sinz 20 + (£Xx — €05 20)°

Coherent Elastlg _ 23J2G.n,E,
Scattering: V, 'V, only! =T A
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Solar Neutrinos

ﬁalllum

« There is a glorious history «—#

Chlerine p Huperk. SNG

of solar neutrino physics 2 «
— original goals: demonstratef «; | | I
fusion in the sun g =

— first evidence of oscillations ... —

lﬂrr o
19 i e e R
0.1 I 1 3 10

Neulrino Energy (MeV)

I R
5-20 MeV

vite 2>v+e

< :
GALLEX E 2r

INTERHATIOHAL

SOLAR MEUTRINO RESEARCH B
x COLLABORATION - --.. -
' 1
‘ an-Amer G : 22400230 solar v events
1 "erimai '- i (14.5 events/day)
. . l; i . " o .l".’ n L L r N | N L N L | " L L L | r L L L
. A y -1.0 -0.5 0.0 0.5 B c?sB&'!r..U
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Culmination: SNO

« D,0 target uniquely observes:
— charged-current v.d — ppe
— neutral-current  vyd — v, pn

* The former is only

observed for v,
(lepton mass)

* The latter for all types - °

o Solar flux is consistent
with models

— but not all v, at earth

BE0s

ce - oo 68% CLL.

—— e 68%, 95%, 99% C.L.

(x 10°cm?2s )

[

(=

aﬁ"l;“
d, (x 106 cm? 571
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KAMLAND

Sources are
Japanese
reactors

— 150-200 km
for most of

flux. Rate uncertalnty ~6%

* 1 kTon scint. detector in ee
old Kamiokande cavern

— overwhelming confirmation ¢ |
that neutrinos change flavor *|
In the sun via matter 0

—— no-oscillatio
—— best-fito IIt

0 accidentals

I spallation
—s— KamLAND data

ts /0.425 MeV

effects b oews
prompt
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Solar Observations vs. KAMLAND

o Solar data only 20 Solar + KamLAND
ke - % : — 68% CL i
= i i & i —95% CL i
L 151 g ~ DB —99.73% CL Bl
< ;j‘ I
10 | o 10 - il
‘ ] + KAMLAND = | ]
51 il gl i
0 02 04 06 08 I 0 02 04 06 08 I
tan"0 tan"0

Solar neutrino observations are best
measurement of the mixing angle

« KAMLAND does better on 6m?,,
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Atmospherlc Neutrinos

hadronic cascade + decays

[ B e 2
& + e
z Predicted ratio of muen to
electron neutrings
almost isotropic source
(seomagnetic effects)

* Neutrino energy: few 100 MeV - few GeV
* Flavor ratio robustly predicted
« Distance in flight: ~20km (down) to 12700 km (up)
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« Super-K
detector has
excellent e/u
separation

Super —kamio kand e 545 days P Imlnary

L T T T T T T T T
multi-GeV e-like
150 |- —

old, but
wl good data!

multl GeV mu-like (FC+PC)

# Data
[ Predicted

— Numu-nutau osc.

-1 06 -02 02 06 1 -1

cos(zenith angle)

-06 -02 02 08 1
cos(zenith angle)

« Up / down difference!
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Data/Prediction (null oscillation)
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K2 K figures courtesy T. Nakaya

Neutrino Beam from “101v,/2.35ec  ~108v,/2.25ec
KEK to Super- (/10mx10m) V,  (/40mx40m)
I — 5-.-.:-. '.'.'.:'.:'.'.'.'.:'.-..... %
Target+Horn < >
o {leca\ plpe;
T mont / Near v detectors
| monitor (ND)
%‘ 16 5
* Experiment has completed ¢ | K2K-T 8 K2KI
. : S No oscillation
data-taking Sl o
— confirms atmospheric c |
neutrino oscillation parameters = * | 1
with controlled beam S j’ —
— constraint on dm?2,, (limited statistics) Ey™ (GeV)
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Enough For Three Generations

figures courtesy B. Kayser

Vs 4 V)
2
’) .
(Mass)2 ‘Am_atm OI
VA h J 5
’\.J'I } &m-SDl *\r% A 4
dmg, 2> 6m,,2=8x10-°eV? dM_, 2> dmM,;°=2.5x10-3eV/?

« Oscillations have told us the splittings in m?, but nothing
about the hierarchy

« The electron neutrino potential (matter effects) can
resolve this in oscillations, however.
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Three Generation Mixing

o slide courtesy D. Harris
Lesson Learned from CKM: 3 mixing angles and a phase

Call them 619, 693, 613,0  if 8;; = sin6;;, ¢;; = cos b5, then
(1 0 0\ C13 0 8136'55\H [ c19 s19 0)
U=|0 3 393 0 1 O —s19 ¢19 0

0 —s23 €93 k_313e_26 0 ¢3 JL 0 01
.

Reactor

U= and/or

Accelerator

Ve

* Note the new mixing in middle, and the phase, o
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But CHOO/.Z... _—

* Like KAMLAND,
and Palo Verde expt’'s
looked at anti-v,

reactor

— compare expected to
observed rate c~4%

6 June 2005

} Sm?2

Nuclear Power Station
2 x 4200 MWth

CHOOZ Baug

from a

Chooz Underground Neutrino Laboratory
Ardennes, France

* |f electron neutrinos don'’t
disappear, they don’t transform to
23 muon neutrinos

— limits v ->v, flavor transitions at

and therefore |U_;| is “small”
Kevin McFarland, Neutrinos (Expt'l) 19




Optimism has been Rewarded

“We live In the best of all possible worlds”
— Alvaro deRujula, Neutrino 2000

* By which he meant...
had not
E

atm v/ Rearth < ésmatm <Eatm v/ hatm

and had not solar density proﬂle
and om, . been et

well-matched... .*W“mwmigi

« We might not be discussing v oscillations!
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Are Two Paths Open to Us?

* If "CHOOZ" mixing, 6,5, is small, but not too
small, there is an interesting possibility

/ 6My32, 043 \

Vu ve
\ oM. 5?, 04, /

« At atmospheric L/E, LARGE

SMALL ((mg —mlz)Lj

P(v, —>v,)=sin® 20sin® e
LARGE
SMALL
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Implication of two paths

 Two amplitudes

/ 6My32, 043 \
Vu Ve
\ oM. 5?, 04, /
* |f both small,

but not too small,
both can contribute ~ equally

* Relative phase, 9, between them can lead to
CP violation (neutrinos and anti-neutrinos differ)
In oscillations!

6 June 2005 Kevin McFarland, Neutrinos (Expt'l) 22



Leptons Have Rediscovered the

Wonders of Three Generations!

 CP violation and matter effects lead to a

complicated mix...

« CP violation gives ellipse >
but matter effects shift
the ellipse in a
long-baseline accelerato r
experiment...

6 June 2005

Minakata & Nunokawa
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But LSND...

figures courtesy S. Brice

o (hep-ex 0104049)
. ;EE 1/7.6 ® Baam Excess
* LSND anti-v, excess § e
£ B pm, Ve
@ o
— 87.91£22.4146.0 events & 125 PO
[EEEH  other
— statistically overwhelming; 10 gl
however... 75| B
[T T i S
T LSND 25
B vV, : B i
10'];— — -
i | 04 06 08 1 1.2 1.4
107 - L/E, (meters/MeV)
t  (Soudan, Kamiokande, Atmospheric
.} MACRO, Super-K) Vi Vx N
0 ] E LSND dm2 ~ 0.1-1.0 eV?2 cannot be
A (Homestake. SAGE. ]
10 ¢ GALLEX. Super-K goﬁl)i['vMSW o Atmos. 8m2 ~ 2.5x1 0-3 eVZ > accommodated
© SNO.KamLAND) ‘¢ °'X 5 with only three
0T ””1|o|'3 o mlllol‘a - u;l - .’J....l Solar dm?2 = 8.0x10-5 eV?2 ) neutrinos
sin” 20
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MiniBooNE

figures courtesy S. Brice

LMC
Beamline T—/ |
Booster n_—.—u_..—-%"":a__.l_,
Target and Horn ~ Decay Region 500m dirt Detector
Primary Beam Secondary Beam Tertiary Beam
{protmrfs] ’ |[Lna35|:r11'5,;“Er ’ {nefltnnos] ’
* A very challenging experiment! ":
+ Have~0.5E21 :¢ = =
protons on tape -
* First v, ’
appearance
results in :
late 2005 LU

sin248 E..m: [Ge"u‘] Low Am”
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Next Steps

(Brazenly Assuming Three Neutrinos)

« MINOS and CNGS
 Reactors
« T2K and NOVA

graphical wit
courtesy A. deRujula

« Mating Megatons and Superbeams

» Beta (v,) beams and
neutrino factories (u>v, and v )

6 June 2005 Kevin McFarland, Neutrinos (Expt'l) 26



Isn’t all of this overkill?

* Disentangling the physics from the
measurements is complicated (S. Parke)

* The short version of the story is that
different measurements have different
sensitivity to matter effects, CP violation
— Matter effects amplified for long L, large E,

— CP violation cannot be seen in disappearance
(reactor) measurement v, v,

6 June 2005 Kevin McFarland, Neutrinos (Expt'l) 27



NuMI-Based Long Baseline
Experiments

* 0.25 MWatt - 0.4

* Two generations:
— MINOS (running)

6 June 2005 Kevin McFarland, Neutrinos (Expt'l)

MWatt proton source

28



MINOS

Goal: precise 735km baseline
di 5.4kton Far Det.
V“ ISappearance 1 kton Near Det.

measurement
Gives dm?,,

Running since early
2005

earGeV

, OC Eventa/ku'y

W

B s
= e g e

A e R
T

B w (1
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9
g x10 Rsc” O o¢ (arbitrary units)

-~ 04
E Am2= 3 10-3eV?

Goal: v_ appearance
CNGS - 0.15 MWatt source
* high energy v, beam
» /32 km baseline
Ry R - handfuls of events/yr

i 035
E 0.3
E 0.25
S 02

0.15

v, fluence
0.1

E (GeV)

1 mm

~©°9.5GeV, p;=0.47 GeVic
: A T _Igé-f LR ‘iﬂ

£V O G
i u“;'ll_-J.. '#‘3

o

Muon Spectrometer

fiugres courtesy A. Bueno
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Back to

Reactors

Recall that 15 %
KAMLAND
saw an’[i-ve Ni ‘%ﬁ ''''' “q‘““‘"” ——————
disappearance Zﬁ 08+ | q
at solar L/E - % Sdvannah River +-
ZE’D 0.6 Bugey el
Have not seen ¥ oo
. gy oesgen L ¢
disappearance at/ A Keasnoyark S
. [0 Palo Verde
atmospheric L/E 0.2~ W Chooz
@ Kam[AND
00 | | | | |
10" 10° 10’ 10* 10°
Distance to Reactor (m)
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Why Reactors?

« CHOOZ (reactor) has left us without evidence of
anti-v, disappearance indicating |U_;|>0

— reactors are still the most sensitive probe!

« CHOOZ used a single detector

— therefore, dead-reckoning used to estimate neutrino
flux from the reactor

— could improve with a near/far technique

« KAMLAND has improved knowledge of how to
reject backgrounds significantly
(remember, their reactors are ~200 km away!)
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How Reactors?

« To get from ~4% uncertainties to ~1% uncertainties,
need a near detector to monitor neutrino flux

* For example, Double-CHOOZ proposes to add a second

near detector and compare rates Nugiear Eoker staion

— new detectors with 10 ton mass Z;/i L

—_— ~ Y /
total error budget on rate ~2%

— low statistics 10t limit spectral Bk 585 B t

. . . . not an

distortion, 1 km baseline likely engineering
shorter than optimum oy | drawing

« Optimization beyond Double-CHOOZ.". S

— ~100 ton detector mass
— optimize baseline for 6m?,,
— background reduction with active or passive shielding

6 June 2005 Kevin McFarland, Neutrinos (Expt'l) 33



Where Reactors?

Proposal Baseline Owverburden Detector Size | Sensitivity (sin® 26,5)
(Near /Far) | (Near/Far) (Near/Far)

Double CHOOZ | 0.2/1.05 50/300 mwe 10/10 ¢ 0.03

Braidwood 0.2/1.7 450/450 mwe | 130/130 t 0.01

Diablo Canyon 0.4/1.7 150/750 mwe | 50/100 t 0.01

Angra, Brazil 0.3/1.5 200/1700 mwe | 50/500 t 0.01

Daya Bay, China | 0.3/1.8-2.2 | 300/1100 mwe | 50/100 t 0.01

» A series of proposals with different technical
choices

* All challenging experiments to limit systematics

6 June 2005 Kevin McFarland, Neutrinos (Expt'l)



Megawatt Class Beams

« J-PARC
— initially 0.7 MWatts - 4 MWatts

 FNAL Main Injector
— current goal 0.25 MWatts - 0.4 MWatts
— future proton driver upgrades?

e Others?

6 June 2005 Kevin McFarland, Neutrinos (Expt'l)
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J-PARC Facility

uniq ue faCillty Materials and Life
3GeV+50G . Science
Mu":'_pur S ok "~ Experimental Facility

Hadron
Experimental Facility

) -_’;',i:' rhgy .?-.:1‘__;_._.-_“. <

jals and life sci. | TR
: - Transmutation

-

50 GeV Synchrotron B8
Synchrotron (0.75 MW)
(25 Hz, 1MW)

[
J-PARC = Japan Proton Accelerator Research Complex

T NN e oo
- _ A - Neutrino to
2001 e AP . Kamiokande S
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A Digression: Off-axis

* First Suggested by Brookhaven (BNL 889)

« Take advantage of Lorentz Boost and 2-
body kinematics iBrmroc

©0.04|

» Concentrate v, flux ~ %oos
at one energy .y %
e Backgrounds lower:  ° o
— NC or other feed-down |\
from high>low energy oo — — ccon
— v, (3-body decays) isz ot |

0 05 1 1.5 2 25 3 35 4 45
p.(lengitudinal) (GeV)

_ _ figure courtesy D. Harris
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T2K ]
Tunable off-axis beam from 9’* ° !
J-PARC to Super-K detector j;jﬁ g ._

— beam and v, backgrounds are *** (S
kept below 1% for v, signal

_ ~2200v events/yr (w/o osc.) Ve /
o Fr Ema@ o — -

ﬁ‘&é

o b I nmz—gxm«'ieua 101 7 :
oa | IU e e ey sin226{, P '
- | ! i ] i - >0.0 6[900}":) 40 E_ = - S|gna|+BG
-2 ' =
| 0 CHOOZ 3
[ ~20 excluded 30 3 —— BG
20F 4y \m?2 = 3x10-3eV
.' L E T - )
i W/ 10% error .- 1_ :
[ , for BG subtraction 2 | ars
a Lt — 107 10° 5 107 1 4
005 1 15 2 25 3 35_4 Sin<20:3 : Eviec(GeV)
6=0, no matter effects
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NuMI-Based Long Baseline
Experiments

* 0.25 MWatt - 0.4

* Two generations:

— NOVA (future)
15mrad Off Axis

6 June 2005 Kevin McFarland, Neutrinos (Expt'l)

MWatt proton source
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« Use Existing NuMI

beamline
 Build new

Scintillator Detector

NOvVA

Goal:
v, appearance

30kTon In v, beam

« 820km baseline--
compromise between
reach in 0,; and matter

effects

3.87 cm})

\ Plane of horizontal cells

6 June 2005

30

vy CC events/kt/3.7E20 POT/0.2 GeV

25 [
20 |
15 F

10 [

:. l. *
i o .
L : * o ]
e .
.
- .i: *
o Omrad «
7 mrad <]
— 14 mrad
------ 21 mrad ]
0 2.5 5 7.5

figure courtesy M. Messier
Medium Energy NuMI Beam Tune

,"“I""\“".I“",
- rates for L = 810 km .."'. '.. 3

10

Assuming Am?=2.5x10-3eV/?2

e .
P figures courtesy J. Cooper

:“":q"":a‘-:m_h:ﬁq--r::;}ﬁ? =
o = ‘f:,-:} o a0 =
< hl I«j L1 =
” 280 £
| -'"; il"’.f.i E
= 1 a0 =
o .”"4 LA E
e | L/.{ 360 E_
i) L 850 =
! L] | =
21 1.4 =

S g = .

e A - E= T PRI VY (RSP EF AR R 0

— Plane of vertical cells 760 1770 1760 740 1800 1810 1820 1830 T840 1850
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Future Steps after T2K, NOVA

 Beam upgrades (2x — 5x)
* Megaton detectors (10x — 20x)

« BUT, it's hard to make such steps without
encountering significant
TECHNICAL DIFFICULTIES

— hereafter “T.D.”

6 June 2005 Kevin McFarland, Neutrinos (Expt'l)
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TD: More Beam Power, Cap’n
Example Fermllab Proton Drlver

Injector
@2 MW/ S
Parallel Physics and
Machine Studies....
main justification




TDs: Beamlines

pictures courtesy D. Harris

« Handling Many MWatts of proton power and
turnlng it into neutrinos is not trivial! NuMI Horn 2.

ST Note conductors
SN 0| NuMI tunnel and alignment

? ' boring machine. fixtures

3.5yr civil
construction

NuMI downstream absorber.
Note elaborate cooling.
“Cost more than NuTeV
beamline...” — R. Bernstein

6 June 2005 Kevin McFarland, Neutrinos (Expt'l)



TDs: Detector Volume

« Scaling detector volume is not
so trivial

NOvA

At 30kt NOVA is about the same mass as BaBair,
CDF, Dzero, CMS and ATLAS combined...
— want monolithic, manufacturabile structures

— seek scaling as surface rather than volume if possible

6 June 2005 Kevin McFarland, Neutrinos (Expt'l) 44



For Perspective...

« Consider the Temple of
the Olympian Zeus...

« 17m tall, just like NOVA!
— a bit over 2 the length

|t took 700 years to
complete

| — delayed for lack of funding
P e ] for a few hundred years

e £ A e g+ Fortunately construction

e a technology has improved

r sjc_)eaker' | — has the funding situation?
Kevin McFarland, Neutrinos (Expt'l) 45
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Perspective (cont'd)...

« Consider the « 120m long, 10% less
2Toa TOY ATTOAOV ... than NOVA
"\ — roughly the same height
and width

|t was rebuilt over a
mere four years

— Funded by
John D. Rockfeller

* Morals:
— grand endeavors!

— know who holds your
checkbook...

m your speaker
6 June 2005 Kevin McFarland, Neutrinos (Expt'l) 46



TDs: Detector Volume (cont’d)

* For megatons, housing a detector is dlfflcult'_

Span figures courtesy C.-K. Jung

GPAN (m)

A
i

:::::: A |
=S CIAMIER

sbRERN

CEFTH im

(20x Super-K)

UNO: 60m span
1500m depth

Depth (below surface)
]

« Sensor R&D: focus on reducing cost

— in case of UNO,
large photocathode PMTs

— goal: automated production,
1.5k$/unit

6 June 2005 Kevin McFarland, Neutrinos (Expt'l)
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.. Field Map,
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TDs: Neutrino Interactions

figures courtesy D. Casper, G. Zeller

« At 1-few GeV neutrino energy (of interest for osc. expt’s)

— Experimental errors on total cross-sections are large
e almost no data on A-dependence

— Understanding of backgrounds needs | _ o
differential cross-sections on target € H J l' . {_
— Theoretically, this region is a mess... % R A0
transition from elastic to DIS % | |
1.25_ T T T T T 7 I :I .
= o CCFRR [15] e
® - T O BNL 7—feet [18] 1
& ' ) o ANL 12-test [18] 3 ~
B | 1| "go%
:FD 0.75 % . V |
= w } .
g > |44 L
5 025 . - Vn'_)“nn .
K ' 1, ' 0. 100.
I:I.I - Eulﬂ!\"}
T 09 tol 102 ‘



Futuristic Accelerator Beams

e Conventional Beam figures courtesyD Harris
Protons 1K (W) v, Detector Needs
W over
Lt:iietch;rm Shielding ~ _ 2., ::‘__\Q’
 Beta Beam
6 1
He or ‘°Ne B
WDy ( ] ) V, or IS \/
é W over
decay Shielding pe— q:;\__q’
* Neutrino Factory
Protons u;a-r vy V. |
1l
—> ¢ )e N ~
cool,accelerate  Shielding S | q:’___\_q’
decay

« Great experimental benefits to new beam technology,

but beams are very challenging! And costly...
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More to learn from the sky?

Sign-separated atmospheric neutrinos
— MINOS detector is flrst W|th thls capablllty

— determine charge | R | _TimevsY
from bend A B Time vs Z
"
T Y vs X
i . Strip vs Plane
(1]

"IN P P
-1 -0.9-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0.1 ﬂ

~1 yr MINOS cos0 Y vs Z

figures courtesy M. Bishai, H. Gallagher

« Why study neutrino vs. anti-neutrino oscillations?
— possibility to test CPT violation scenarios if suggested by MiniBooNE

and LSND results
6 June 2005 Kevin McFarland, Neutrinos (Expt'l) 50



Observing Matter Effected

Oscillations
 We apparently have seen matter effects in the

sun..

» Best results
from Super-K <
« Expect ~2%
effect
— Not there yet

* Interesting 22

w 2.8

Flux in 10%cm

solar v 2

experiments...
6 June 2005

. can we verlfy it In the earth’?

M
-~

All
for future 2.4}
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The Broadest Goals

 Understand neutrino mass
— absolute scale and hierarchy %

6 June 2005 Kevin McFarland, Neutrinos (Expt'l)
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Neutrinoless Double-Beta Decay

* Double beta decay
"7 > " (z+2)+ 25 + 2,
IS a rare, but
observed process

graphics courtesy Symmetry magazine

* “Neutrinoless” implies that the neutrino is
its own anti-particle (Majorana particle)

™ =m,,* x(phase space)x (nucl. matrix elems.)

\ calculable \ evaluable w/ largish
, uncertainties
» The prize: m,, => U,

6 June 2005 Kevin M:Fallrland, Neutrinos (Expt'l)
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Experimental Challenges

* Observables: electron energy, and the final state

nucleus (EXO)

— Electron energy
requires excellent
resolution and low
non B backgrounds

— Tagging the final
state nucleus is “finding
a needle in a haystack”

2.0

1.0 2 Vv

0.5 OV

0.0 //.k

T T T T
0.0 0.2 0.4 0.6 0.a 1.0

sum electron energy / Q

* Must also have significant quantities of 33

decaying isotopes

— not necessarily easy to purify. good detector material?

6 June 2005
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Current Results to Date

Isotope Exposure Background Half-Life {maga)

i {kmolc—}:] (counts) Limit (y) (meV)
 Results ToGe 0467 21 x < 350[106]
. 6Ge 0.117 35 <330 - 1350[107]
 To notice: Ge  0.043 61 = 440[103]
26 130 Mo 5 x 107" 4 > 5.5 x 10° < 2100109
"8Cd 1 x107? 14 1.7 x 10%? 1700[110
- Gea Te have l'].ll;a - z 7.7 % 1024 - 11{?111 1[mmr]n11
” 30T, 0.025 5.5 x 10 370 — 1900[112
large quantities, . .00 Ziiiee SO0 190002
50Nd 6 x 1077 0 > 1.2 x 107! < 3000[114]

beSt Ilmlts SO far figure and table from APS vreport: direct mass group
— There is a claimed -1

observation - |
- controversial . I
- significant non-pp e I

backgrounds i i

(hard to predICt BI IlneS) 2000 2010 2020 2030 2040 2050
B B Energy (EeV)
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OvBB Future

« If the Heidelberg-Moscow "°Ge result is
correct, should be confirmed “easily”

- If not, want to push sensitivities to mg,? to
at least level of m?,, (maybe 6m?,,)

— approximately two (maybe four) orders of
magnitude lower than present situation

« Experiments are very difficult = want
confirming signals in multiple isotopes

— many exciting ideas for future experiments

6 June 2005 Kevin McFarland, Neutrinos (Expt'l)
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OvBp Approaches: CUORE

figures courtesy E.Fiorini

» Calorimetric (thermal) detector which  heat bath
is the BB source (TeO,)
=— ~keV resolution at B3 endpoint (2528 keV)

LI I LSS

——+8— Currently running “Cuoricino”, 40 kg Thermal sensor
T :I — Full CUORE expects to have 750 kg, T~
I B reduced background levels TeO,

crystal

e
hivetime=034+546 =58 kgy \
~ 23 VO
T >T1.5 10”7y at 90% C.L.
f \ll. fit, constant bkg, 1 and **Co sum lines) e-

kg in the OvAf region = 0,19 counts/i keV kg y)

i tooal

CUORE R&D (Hall C)

5:41*

_ ;—g; - iﬁ‘\.
= 53 ?’; S
P

CUORE (Hall A) || Cuoricino (Hall A)/\

6 June 2005 Kevin McFarland, Neutrinos (Expt'l) 57




OvBp Approaches: NEMO 3

figures courtesy X.Sarazin -

« Tracking/calorimetric detector external
to source foils (10kg of 33 isotopes)
— Geiger mode wire chambers, B=25G
— Scint/Low Rad. PMT calorimeter
— Gamma and neutrino shielding

— First results w/
100Mo and 82Se

6914 g
265 days

: Data
— Developing - BR2y
proposal to o Monte-Carlo

Radon

Number of events / 0.04 MeV
™

scale to 100kg

Monte-Carlo

o !

E E -
s BROV arbitrary

a . .
: unit

2§

(1] L . i I

2.6 2.7 2.8 2.9 3 31 3.2 TR

E+E, MeV) ) |
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Other Mass Determinations?

figures courtesy K. Eitel
cosmology & astrophysics:
structure formation SN ToF measurements

AT

SN200x(?)-v-ToF SN20xx
D.N. Spergel etal: *m_ <0.69 eV (95%CL) h potential for ~few eV sensitivity
powerful, but very indirect direct, but precision requires

detailed knowledge of SN

B decay kinematics: microcalorimeters
magnetically adiabatic collimating electrostatic spectrometers

direct, but very challenging

experiments
utrinos (Expt'l) 59



figures courtesy K. Eitel

KATRINet
I = Mainz 98/99 data

3 3 I — fit for m,*=0
H — He + ﬂ + U 0.04T g o Moi:mz 2001 data (prel)
phase space determines energy spectrum ’

%) - E,
E, = E, + E, (+ recoil corrections) 2
é 0.02}
dN/dE o (EO_Ee) X [ (EO_Ee)2 — mv2 ]1/2 o 01;— "*:-"'ﬂé-ﬂ.* ° ¢ e
0 10 eV
[ —»
theoretical  spectrum near endpoint L
18.55 18.56 18.57 18.58
- L " retarding energy [keV]

| . .
— | Hvelectrodes retarding (variable)

el —  E-fieldallows only MAC-E spectrometers
TEE ~ == E>AE,, to pass (Mainz, Troitsk)

source \ EE;Etecmr mv<226V(950/0CL)
L energy resolution: (sensitivity limit)
' AE/E=B_. /B,___
B, Biay Bonin . . KATRIN sensitivity
f max = m,<0.2eV(90%CL)
Bmin = 3x10-4 T v
f /y/(r/d::_’f o /S(;mAnE 1 eV commissioning in 2008
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The Broadest Goals

 Understand v interactions

—new physics? new properties?N(/

6 June 2005 Kevin McFarland, Neutrinos (Expt'l)
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Neutrino Interactions

* S0 broad a subject... so little time
* Precision EWK

* Neutrino magnetic moments
 Parity-violating probe

* (More on non-standard interactions from
S. Parke’s talk)

6 June 2005 Kevin McFarland, Neutrinos (Expt'l) 62



Neutral Currents in Neutrinos

 Neutrino neutral current?
— LEP invisible width, only 2c

— NuTeV may be 1.00 +/- 0.05 v/ 1’”‘: CHARM II et al.
LEP I Direct
very | arge 1.00 +/- 0.02 |
. . . . 0.995 +/- 0.003 e LEP I Lineshape
Isospin violation
0.96 0.98 1.00 1.02

Neutrino NC Rate/Prediction

 Future reactors? Conrad, Link, Shaevitz

— if reactor experiments have precision for 6,5, may also
be able to measure neutral currents

— opportunity for a purely leptonic probe
v.e —v.e
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MINERVA, for Oscillations

* Noted that neutrino interactions are poorly known...

« Backgrounds or signal rate uncertainties for next
accelerator oscillation experiments could limit precision

+ Enter MINERVA at NuMI beamline B 52 2Bt

— newly approved cross-section
experiment in NuMI near hall

— construction start in late 2006;
taking data by 2008

-

; | ' . For example’ ) 002: MINOS Disappearance
i:|: E|LEIE [ g - i
MINERVA helps |5} G

1 MINOS know S

0.1  —— MINOS (7.4e20 POT)

LR L relationship

----- MINOS +0,, (nucl) AM
S — MINOS +0,,, (nucl) PM

o
o]
a

90% CL Froctional Error on Am

between visible
Photon tracks! dt 9e 76 18 2 22 24 25 28 3
figures courtesy B. Ziemer, D. Harris, R. Flight ~and lrueé energy S lre,
6 June 2005 Kevin McFarland, Neutrinos (Expt'l) 64




The Broadest Goals

» Use neutrinos as probes

— nucleon, earth, etc. v —s O

6 June 2005 Kevin McFarland, Neutrinos (Expt'l)
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MINERVA, Axial Form Fatr

- An experiment like MINERVA i 28
can add to knowledge of
nucleon structure!
— Jefferson Lab for

_ QE scattering, v,, F,(Q%)/dipole, Mn—l.DH GeV
neUtrInOS 1.5 | o “: Hir;eré'ﬂ, F'*l[qa} Er:rnlrs .1 |
- Example: axial + % o BAL 61, Dy, Bker ot ol
" ¥ < ANL 82, Dy Miller et al.
u p O FNAL 83, D,, Kitagaki et at.
structure of proton 3 10 -{E :1&# b @} E :
. G LAY (I
at hlgh QZ_ % T e |7 } ] Jf
— of interest because £ °° 1 “ % ’ L
of puzzling behavior
of vector form factors 0.0 5 ) .
figures courtesy H. Budd, R. Flight Q° (GeV/e)®
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Journey to the Center of the

(Spherical) Earth: Geoneutrinos
 Another use of neutrinos as a probe
e The journey in brief: figures courtesy G. Ei;)arteFT:Lni
— earth radiates 30-45 TWatts in heat T

— the hypothesis: this is due to
radioactivity of the earth

— this radioactivity emits low energy

0 40 g0 85 120 180 240 350

anti-neutrinos from U and Th W

Crust 0-33 km

decays detectable via
v+ p—e +n-1.8MeV

Upess Manths A3-670 km
B+ Lower Mantle &70-2700 km

B - Cuter Core 2900-5150 km

— one complication: much of
U/Th is in crust

6 June 2005 Kevin McFarland, Neutrinos




Geoneutrinos (cont’'d)

i ] . ] ] figures courtesy G. Fiorentini 4 //IP Sl

* Crust distribution is location o \

dependent, but can be determined '
by geochemical surveys

« Subtraction of the variable (local)
part leaves the “global” U/Th

« Atright, expected local and 800
maximum “global” signal forU  ,©
— “TNU” unit is 10-32 ev/prot-yr

Signal [TNU]
[N
[
|

KamLAND S(U+Th)=(82+52stat.) TNU
clearly needs more datal!

m(U) [10'7 kg)

6 June 2005 Kevin McFarland, Neutrinos (Expt'l) 68



Other Interesting Ideas

 Why is this so important to neutrino physics?

* Field has been driven by unexpected results
from nearly every window we've looked in!

 To me, it seems like every neutrino conference |
go to | hear at least one novel and audacious
idea for an experiment...
— Gallium source calibration
— EXO Barium tagging
— etc.

* So here’s one | recently learned about. It may work, it

may not. It is illustrative...
6 June 2005 Kevin McFarland, Neutrinos (Expt'l) 69



keV Neutrino Source

High Voltage

* |f one could make:
— 200 MCurie *H, source
— 3000 m? spherical
Xe TPC volume at 1bar
* One could look
at atmospheric L/E
in the lab

« NOSTOS experiment.
Obviously not trivial
technically...

figures courtesy |. Giomataris Detector + tritium source
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Breathless Conclusions

* There is a lot going on in neutrino physics!

 Nature has been kind to us
so far, and answers to
fundamental questions
may be ripe for the picking

* But, new experiments are
getting more difficult...

— Still, we've been historically patient in neutrino
physics (e.g., 30 years from Pauli to Reines and Cowan)

— And it's been worth the wait!
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