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Neutrinos: View from the
Center of the Earth

• Today we’ll choose a broad overview
– rather than a focused study in depth
– neutrino people: this is for the energy frontier folks.

please be patient!  you’ll get your turn later in the week
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The Broadest Goals
• Understand mixing of neutrinos

– a non-mixing?  CP violation?
• Understand neutrino mass

– absolute scale and hierarchy 
• Understand ν interactions

– new physics?  new properties?
• Use neutrinos as probes

– nucleon, earth, sun*, supernovae*

ν

ν

* fascinating topics, but outside the
scope of this talk.  See Dave Wark…
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Neutrino Mass Eigenstates
• The building blocks of what we know

– #νs with weak couplings:
• W+: 3 observed (DONUT)
• Z0:  exactly 3 (LEP, SLD) 

– Solar neutrino oscillation: …, SNO, KAMLAND
– Atmospheric neutrinos: …, Super-K, K2K
– Puzzles and null results: LSND, CHOOZ

• LSND “puzzle” is requirement of more neutrinos
• CHOOZ/Palo Verde suggest one small mixing
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Qualitative Questions
• The questions facing us now are 

fundamental, and not simply a matter of 
“measuring oscillations better”

• Examples:
– Are there more than three neutrinos?
– What is the hierarchy of masses?
– Can neutrinos contribute significantly to the 

mass of the universe?
– Is there CP violation in neutrino mixings?
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The Broadest Goals

ν

ν

• Understand mixing of neutrinos
– a non-mixing?  CP violation?

• Understand neutrino mass
– absolute scale and hierarchy

• Understand ν interactions
– new physics?  new properties?

• Use neutrinos as probes
– nucleon, earth, etc.
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What We Hope to Learn From 
Neutrino Oscillations

• Near future
– validation of three generation picture

• confirm or disprove LSND oscillations
• precision tests of “atmospheric” mixing at 

accelerators

• Farther Future 
– neutrino mass hierarchy, CP violation?

• Precision at reactors
• sub multi MegaWatt sources
• 10 100 1000 kTon detectors

6 June 2005 Kevin McFarland, Neutrinos (Expt'l) 7



Minimal Oscillation Formalism
• If neutrino mass eigenstates: ν1, ν2, ν3, etc.
• … are not flavor eigenstates: νe, νµ, ντ

• … then one has, e.g.,
cos sin
sin cos
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⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠

take only two 
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for now!
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Oscillation Formalism (cont’d)
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• So, still for two generations…

• Oscillations require mass differences
• Oscillation parameters are mass-squared differences, 

δm2, and mixing angles, θ.
• One correction to this is matter… changes θ, L dep.
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Solar Neutrinos
• There is a glorious history

of solar neutrino physics
– original goals: demonstrate

fusion in the sun
– first evidence of oscillations

SAGE - The Russian-American
Gallium Experiment
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Culmination: SNO
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• D2O target uniquely observes:
– charged-current
– neutral-current

• The former is only
observed for νe
(lepton mass)

• The latter for all types
• Solar flux is consistent

with models
– but not all νe at earth

X Xd pnν ν→
ed ppeν −→
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KAMLAND
• Sources are

Japanese
reactors
– 150-200 km

for most of
flux.  Rate uncertainty ~6%

• 1 kTon scint. detector in
old Kamiokande cavern
– overwhelming confirmation

that neutrinos change flavor
in the sun via matter
effects



Solar Observations vs. KAMLAND

+ KAMLAND =

• Solar neutrino observations are best 
measurement of the mixing angle

• KAMLAND does better on δm2
12
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Atmospheric Neutrinos

• Neutrino energy: few 100 MeV – few GeV
• Flavor ratio robustly predicted
• Distance in flight: ~20km (down) to 12700 km (up)
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Super-Kamiokande
• Super-K

detector has
excellent e/µ
separation

• Up / down difference!

old, but 
good data!

2004 
Super-K 
analysis



K2K

• Experiment has completed
data-taking
– confirms atmospheric

neutrino oscillation parameters 
with controlled beam

– constraint on δm2
23 (limited statistics)

figures courtesy T. NakayaNeutrino Beam from 
KEK to Super-K
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Enough For Three Generations
figures courtesy B. Kayser

δmsol
2 δm12

2≈8x10-5eV2 δmatm
2 δm23

2≈2.5x10-3eV2

• Oscillations have told us the splittings in m2, but nothing 
about the hierarchy

• The electron neutrino potential (matter effects) can 
resolve this in oscillations, however.
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Three Generation Mixing
slide courtesy D. Harris

• Note the new mixing in middle, and the phase, δ
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But CHOOZ…
• Like KAMLAND, CHOOZ 

and Palo Verde expt’s
looked at anti-νe from a
reactor
– compare expected to 

observed rate, σ~4%

δm2
23

• If electron neutrinos don’t 
disappear, they don’t transform to 
muon neutrinos
– limits νµ->νe flavor transitions at  

and therefore |Ue3| is “small”
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Optimism has been Rewarded

• By which he meant…
had not

Eatm ν/Rearth < δmatm
2 <Eatm ν/hatm

and had not solar density profile
and δmsol

2 been
well-matched…

• We might not be discussingν oscillations!

“We live in the best of all possible worlds”
– Alvaro deRujula, Neutrino 2000
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Are Two Paths Open to Us?
• If “CHOOZ” mixing, θ13, is small, but not too 

small, there is an interesting possibility

• At atmospheric L/E, 

νµ

δm23
2, θ13

δm12
2, θ12

νe

2 2
2 2 2 1( )( ) sin 2 sin

4e
m m LP

Eµν ν θ
⎛ ⎞−

→ = ⎜ ⎟
⎝ ⎠

SMALL
LARGE

SMALL
LARGE
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Implication of two paths
• Two amplitudes

• If both small,
but not too small,
both can contribute ~ equally

• Relative phase, δ, between them can lead to
CP violation (neutrinos and anti-neutrinos differ) 
in oscillations!

δm23
2, θ13

νeνµ

δm12
2, θ12
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Leptons Have Rediscovered the 
Wonders of Three Generations!

• CP violation and matter effects lead to a 
complicated mix…

• CP violation gives ellipse
but matter effects shift
the ellipse in a
long-baseline accelerator
experiment…

Minakata & Nunokawa
JHEP 2001
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But LSND…
• LSND anti-νe excess

– 87.9±22.4±6.0 events
– statistically overwhelming;

however…

figures courtesy S. Brice

LSND δm2 ~ 0.1-1.0 eV2

Atmos. δm2 ≈ 2.5x10-3 eV2

Solar δm2 ≈ 8.0x10-5 eV2

cannot be 
accommodated 
with only three 
neutrinos
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Signal
Mis-ID
Beam

MiniBooNE

• A very challenging experiment!
• Have ~0.5E21

protons on tape
• First νe

appearance
results in
late 2005

figures courtesy S. Brice



Next Steps
(Brazenly Assuming Three Neutrinos)

• MINOS and CNGS
• Reactors
• T2K and NOvA

• Mating Megatons and Superbeams
• Beta (νe) beams and

neutrino factories (µ νe and νµ) 

graphical wit
courtesy A. deRujula
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Isn’t all of this overkill?
• Disentangling the physics from the 

measurements is complicated (S. Parke)
• The short version of the story is that 

different measurements have different 
sensitivity to matter effects, CP violation
– Matter effects amplified for long L, large Eν

– CP violation cannot be seen in disappearance 
(reactor) measurement νe νe
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NuMI-Based Long Baseline 
Experiments

• 0.25 MWatt 0.4 
MWatt proton source

• Two generations: 
– MINOS (running)
– NOvA (future)

15mrad Off Axis
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MINOS
735km baseline
5.4kton Far Det.
1 kton Near Det.
Running since early 

2005

Goal: precise 
νµ disappearance
measurement
Gives δm2

23
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CNGS
Goal: ντ appearance
• 0.15 MWatt source
• high energy νµ beam
• 732 km baseline
• handfuls of events/yr

e-, 9.5 GeV, pT=0.47 GeV/c

ντ interaction, Eν=19 GeV

fiugres courtesy A. Bueno

3kton
Pb

Emulsion layers

ν

τ

1 mm

1.8kTon

figures courtesy D. Autiero



Back to Reactors
• Recall that

KAMLAND
saw anti-νe
disappearance
at solar L/E

• Have not seen
disappearance at
atmospheric L/E
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Why Reactors?
• CHOOZ (reactor) has left us without evidence of 

anti-νe disappearance indicating |Ue3|>0
– reactors are still the most sensitive probe!

• CHOOZ used a single detector
– therefore, dead-reckoning used to estimate neutrino 

flux from the reactor
– could improve with a near/far technique

• KAMLAND has improved knowledge of how to 
reject backgrounds significantly

(remember, their reactors are ~200 km away!)
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How Reactors?

not an 
engineering 

drawing

• To get from ~4% uncertainties to ~1% uncertainties, 
need a near detector to monitor neutrino flux

• For example, Double-CHOOZ proposes to add a second
near detector and compare rates
– new detectors with 10 ton mass
– total error budget on rate ~2%
– low statistics 10t limit spectral

distortion, 1 km baseline likely
shorter than optimum

• Optimization beyond Double-CHOOZ…
– ~100 ton detector mass
– optimize baseline for δm2

23

– background reduction with active or passive shielding
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Where Reactors?

• A series of proposals with different technical 
choices

• All challenging experiments to limit systematics
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Megawatt Class Beams
• J-PARC

– initially 0.7 MWatts 4 MWatts
• FNAL Main Injector

– current goal 0.25 MWatts 0.4 MWatts
– future proton driver upgrades?

• Others?

6 June 2005 Kevin McFarland, Neutrinos (Expt'l) 35



J-PARC Facility
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A Digression: Off-axis
• First Suggested by Brookhaven (BNL 889)
• Take advantage of Lorentz Boost and 2-

body kinematics
• Concentrate νµ flux

at one energy
• Backgrounds lower:

– NC or other feed-down
from high low energy

– νe (3-body decays)
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T2K
• Tunable off-axis beam from 

J-PARC to Super-K detector
– beam and νµ backgrounds are 

kept below 1% for νe signal
– ~2200 νµ events/yr (w/o osc.)
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NuMI-Based Long Baseline 
Experiments

• 0.25 MWatt 0.4 
MWatt proton source

• Two generations: 
– MINOS (running)
– NOvA (future)

15mrad Off Axis
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NOνA
• Use Existing NuMI 

beamline
• Build new 30kTon 

Scintillator Detector 
• 820km baseline--

compromise between 
reach in θ13 and matter 
effects Assuming ∆m2=2.5x10-3eV2

νe+A→p π+ π- e-

figure courtesy M. Messier

figures courtesy J. Cooper

Goal:
νe appearance
In νµ beam



Future Steps after T2K, NOvA
• Beam upgrades (2x – 5x)
• Megaton detectors (10x – 20x)

• BUT, it’s hard to make such steps without 
encountering significant

TECHNICAL DIFFICULTIES
– hereafter “T.D.”
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TD: More Beam Power, Cap’n
Example: Fermilab Proton Driver

~ 700m Active Length
8 GeV Linac8 GeV

neutrino

Main
Injector
@2 MW

SY-120
Fixed-
Target

Neutrino
“Super-

Beams”

NUMI

Off-
Axis

Parallel Physics and 
Machine Studies …
main justification
Is to serve as source for new 
Long baseline neutrino 
experimentsfigure courtesy G.W. Foster



TDs: Beamlines
• Handling Many MWatts of proton power and 

turning it into neutrinos is not trivial!

NuMI downstream absorber.  
Note elaborate cooling.  
“Cost more than NuTeV 
beamline…” – R. Bernstein

NuMI Horn 2.  
Note conductors 
and alignment 
fixtures

NuMI tunnel 
boring machine.  
3.5yr civil 
construction

NuMI 
Target 

shielding.  
More mass 

than far 
detector!

pictures courtesy D. Harris
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TDs: Detector Volume
• Scaling detector volume is not

so trivial

• At 30kt NOvA is about the same mass as BaBar, 
CDF, Dzero, CMS and ATLAS combined…
– want monolithic, manufacturabile structures
– seek scaling as surface rather than volume if possible

figure courtesy G. Rameika
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For Perspective…
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• Consider the Temple of 
the Olympian Zeus…

• 17m tall, just like NOvA!
– a bit over ½ the length

• It took 700 years to 
complete
– delayed for lack of funding 

for a few hundred years
• Fortunately construction 

technology has improved
– has the funding situation?

17m

your speaker
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Perspective (cont’d)…
• 120m long, 10% less 

than NOvA
– roughly the same height 

and width
• It was rebuilt over a 

mere four years
– Funded by

John D. Rockfeller
• Morals:

– grand endeavors!
– know who holds your 

checkbook…your speaker
120
m

• Consider the
Στοα τοψ Ατταλοψ …



TDs: Detector Volume (cont’d)
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• For megatons, housing a detector is difficult!

• Sensor R&D: focus on reducing cost
– in case of UNO,

large photocathode PMTs
– goal: automated production,

1.5k$/unit

figures courtesy C.-K. Jung

10% 
photocathode

60m
60m

40% 
photocathode

UNO.  ~1Mton.  
(20x Super-K)

D
ep

th
 (b

el
ow

 s
ur

fa
ce

) Span

UNO: 60m span
1500m depth

Field Map, 
Burle 20” PMT



TDs: Neutrino Interactions
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• At 1-few GeV neutrino energy (of interest for osc. expt’s)
– Experimental errors on total cross-sections are large

• almost no data on A-dependence
– Understanding of backgrounds needs

differential cross-sections on target
– Theoretically, this region is a mess…

transition from elastic to DIS
νn→µ–pπ0

νn→µnπ+

figures courtesy D. Casper, G. Zeller



Futuristic Accelerator Beams

• Great experimental benefits to new beam technology, 
but beams are very challenging!  And costly…

Detector Needsfigures courtesy D. Harris• Conventional Beam

• Beta Beam

• Neutrino Factory
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More to learn from the sky?
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• Sign-separated atmospheric neutrinos
– MINOS detector is first with this capability
– determine charge

from bend

• Why study neutrino vs. anti-neutrino oscillations?  
– possibility to test CPT violation scenarios if suggested by MiniBooNE

and LSND results  

Time vs Y
Time vs Z

Y vs X

Y vs Z

y
x

z
Strip vs Plane

~1 yr MINOS
figures courtesy M. Bishai, H. Gallagher



Observing Matter Effected 
Oscillations
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• We apparently have seen matter effects in the 
sun… can we verify it in the earth?

• Best results
from Super-K

• Expect ~2%
effect
– Not there yet

• Interesting
for future
solar ν
experiments…



The Broadest Goals

ν

• Understand mixing of neutrinos
– a non-mixing?  CP violation?

• Understand neutrino mass
– absolute scale and hierarchy

• Understand ν interactions
– new physics?  new properties?

• Use neutrinos as probes
– nucleon, earth, etc. ν
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Neutrinoless Double-Beta Decay
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• Double beta decay

is a rare, but
observed process

• “Neutrinoless” implies that the neutrino is 
its own anti-particle  (Majorana particle)

• The prize:

( )Z Z+2 2 2AA
eβ ν−→ + +

graphics courtesy Symmetry magazine

( ) ( )0 2 phase space nucl. matrix elems.mνββ
ββΓ = × ×

calculable evaluable w/ largish 
uncertainties

2
ii

ei i
i

m U m e α
ββ = ∑ (αi is a “Majorana phase”.  

Please look it up because 
I’m not going there…)



Experimental Challenges
• Observables: electron energy, and the final state 

nucleus (EXO)
– Electron energy

requires excellent
resolution and low
non ββ backgrounds

– Tagging the final
state nucleus is “finding
a needle in a haystack”

• Must also have significant quantities of ββ
decaying isotopes
– not necessarily easy to purify.  good detector material?

sum electron energy / Q

2ν

0ν
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Current Results to Date
• Results
• To notice:

– 76Ge, 130Te have
large quantities,
best limits so far

– There is a claimed
observation

• controversial
• significant non-ββ

backgrounds
(hard-to-predict Bi lines)

figure and table from APS ν report: direct mass group



0νββ Future
• If the Heidelberg-Moscow 76Ge result is 

correct, should be confirmed “easily”
• If not, want to push sensitivities to mββ

2 to 
at least level of δm2

23  (maybe δm2
12)

– approximately two (maybe four) orders of 
magnitude lower than present situation

• Experiments are very difficult  want 
confirming signals in multiple isotopes
– many exciting ideas for future experiments
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0νββ Approaches: CUORE
• Calorimetric (thermal) detector which

is the ββ source (TeO2)
– ~keV resolution at ββ endpoint (2528 keV)
– Currently running “Cuoricino”, 40 kg
– Full CUORE expects to have 750 kg,

reduced background levels TeO2
crystal

heat bath

Thermal sensor

e-

e-

figures courtesy E.Fiorini

Cuoricino  (Hall A)

CUORE R&D (Hall C)

CUORE   (Hall A)
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100Mo
6914 g

265 days

Data
ββ2ν
Monte-Carlo
Radon
Monte-Carlo

E1+E2 (MeV)

ββ0ν arbitrary
unit

0νββ Approaches: NEMO-3
• Tracking/calorimetric detector external

to source foils (10kg of ββ isotopes)
– Geiger mode wire chambers, B=25G
– Scint/Low Rad. PMT calorimeter
– Gamma and neutrino shielding
– First results w/

100Mo and 82Se
– Developing

proposal to
scale to 100kg

figures courtesy X.Sarazin

de
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Other Mass Determinations?
figures courtesy K. Eitel

potential for ~few eV sensitivity

astrophysics:
SN ToF measurements

direct, but precision requires powerful, but very indirect

cosmology &
structure formation

D.N. Spergel et al: Σmν < 0.69 eV (95%CL)
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β decay kinematics: microcalorimeters
magnetically adiabatic collimating electrostatic spectrometers

3H

187Re

detailed knowledge of SN

direct, but very challenging 
experiments



10 eV

KATRIN
phase space determines energy spectrum
E0 = Ee + Eν (+ recoil corrections)

theoretical β spectrum near endpoint

dN/dE ∝ (E0-Ee) × [ (E0-Ee)2 – mν
2 ]1/2

retarding (variable) 
E-field allows only 
E>∆Eret. to pass

energy resolution:
: ∆E/E=Bmin/Bmax

Bmax = 6 T
Bmin = 3×10-4 T
so ∆E~1 eV

MAC-E spectrometers
(Mainz, Troitsk)

mν<2.2eV(95%CL)
(sensitivity limit)

KATRIN sensitivity
mν<0.2eV(90%CL)

commissioning in 2008

3 3H He β υ→ + +

figures courtesy K. Eitel
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ν

The Broadest Goals
• Understand mixing of neutrinos

– a non-mixing?  CP violation?
• Understand neutrino mass

– absolute scale and hierarchy 
• Understand ν interactions

– new physics?  new properties?
• Use neutrinos as probes

– nucleon, earth, etc.

ν
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Neutrino Interactions
• So broad a subject… so little time
• Precision EWK
• Neutrino magnetic moments
• Parity-violating probe
• (More on non-standard interactions from 

S. Parke’s talk)
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Neutral Currents in Neutrinos
• Neutrino neutral current?

– LEP invisible width, only 2σ
– NuTeV may be

very large
isospin violation

• Future reactors?  Conrad, Link, Shaevitz

– if reactor experiments have precision for θ13, may also 
be able to measure neutral currents

– opportunity for a purely leptonic probe

e ee eν ν− −→
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MINERvA, for Oscillations
• Noted that neutrino interactions are poorly known…
• Backgrounds or signal rate uncertainties for next 

accelerator oscillation experiments could limit precision
• Enter MINERvA at NuMI beamline

– newly approved cross-section
experiment in NuMI near hall

– construction start in late 2006;
taking data by 2008

νµp→νµpπ0

Photon tracks!

For example,
MINERvA helps
MINOS know
relationship
between visible
and true energyfigures courtesy B. Ziemer, D. Harris, R. Flight



The Broadest Goals
• Understand mixing of neutrinos

– a non-mixing?  CP violation?
• Understand neutrino mass

– absolute scale and hierarchy 
• Understand ν interactions

– new physics?  new properties?
• Use neutrinos as probes

– nucleon, earth, etc.

ν

ν
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MINERvA, Axial Form Factors
• An experiment like MINERvA

can add to knowledge of
nucleon structure!
– Jefferson Lab for

neutrinos
• Example: axial

structure of proton
at high Q2.
– of interest because

of puzzling behavior
of vector form factors

figures courtesy H. Budd, R. Flight
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Journey to the Center of the 
(Spherical) Earth: Geoneutrinos
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• Another use of neutrinos as a probe
• The journey in brief:

– earth radiates 30-45 TWatts in heat
– the hypothesis: this is due to

radioactivity of the earth
– this radioactivity emits low energy

anti-neutrinos from U and Th
decays detectable via

– one complication: much of
U/Th is in crust

1.8p e n MeVν ++ → + −

figures courtesy G. Fiorentini



Geoneutrinos (cont’d)
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• Crust distribution is location
dependent, but can be determined
by geochemical surveys 

• Subtraction of the variable (local)
part leaves the “global” U/Th

• At right, expected local and
maximum “global” signal for U
– “TNU” unit is 10-32 ev/prot-yr

Kamioka

KamLAND S(U+Th)=(82±52stat.) TNU
clearly needs more data!

figures courtesy G. Fiorentini



Other Interesting Ideas
• Why is this so important to neutrino physics?
• Field has been driven by unexpected results 

from nearly every window we’ve looked in!
• To me, it seems like every neutrino conference I 

go to I hear at least one novel and audacious 
idea for an experiment…
– Gallium source calibration
– EXO Barium tagging
– etc. 

• So here’s one I recently learned about.  It may work, it 
may not.  It is illustrative…
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keV Neutrino Source
• If one could make:

– 200 MCurie 3H2 source
– 3000 m3 spherical

Xe TPC volume at 1bar
• One could look

at atmospheric L/E
in the lab

• NOSTOS experiment.  
Obviously not trivial 
technically…

10 m

11 m

Detector + tritium source

Drift
Gaseous volume

Shield

High Voltage

E

ve vee e +   +

e

ve

ve

Drifting charges

figures courtesy I. Giomataris
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Breathless Conclusions
• There is a lot going on in neutrino physics!
• Nature has been kind to us

so far, and answers to
fundamental questions
may be ripe for the picking

• But, new experiments are
getting more difficult…
– Still, we’ve been historically patient in neutrino 

physics (e.g., 30 years from Pauli to Reines and Cowan)

– And it’s been worth the wait!
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