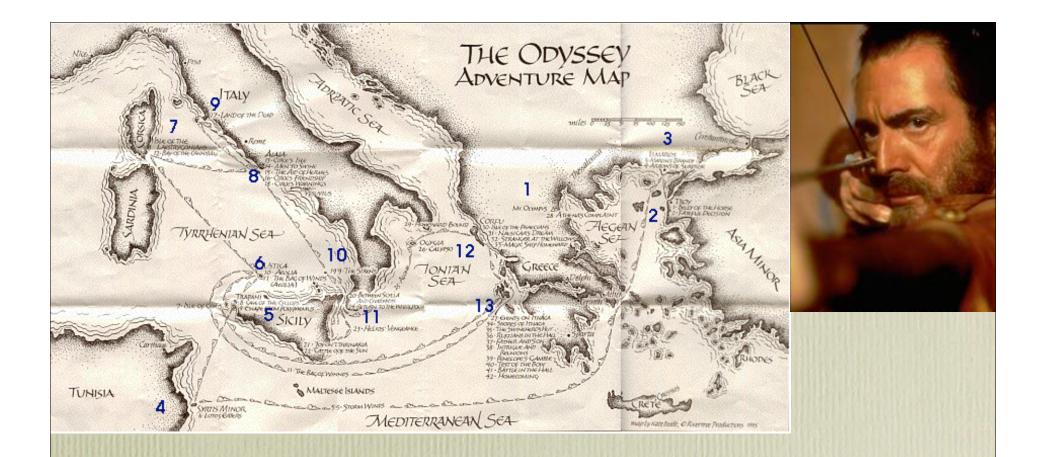
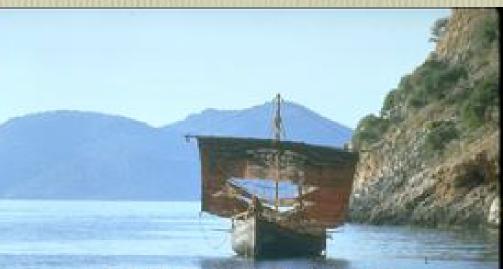
THEORETICAL PROPHESIES ON ELECTROWEAK SYMMETRY BREAKING


JOSEPH LYKKEN FERMILAB

ON DRIVENUS DAPOLLON

WIN05 CONFERENCE, DELPHI, 6 JUNE 2005


outline

- the Odyssey of EWSB
- are theorists useful?
- the General Motors approach to building models
- what do we really think?
- what do we need to know about Higgs?
- what are we getting nervous about?
- the not-so-minimal SSM
- CPV, Higgs, and baryogenesis
- the not-so-little Higgs
- less Higgslessness
- prophesy

- his arrogance angered the Gods
- who doomed him to wander for 10 years
- does this story have a familiar ring?

the Odyssey of EWSB

we have been wandering "beyond the standard model" for 20+ years

but the source of EWSB remains hidden from us

getting close

- only 754 days until LHC
- don't discount possibility of surprises from Tevatron, B factories, wimp searches, EDM expts, etc

are theorists useful?

theorists engage in two types of activity:

- playing around with new/old/stolen ideas for going beyond the standard paradigm (easy, fun, richly rewarded, but potentially useless)
- calculating things within the standard paradigm (useful, but difficult, tedious, and poorly rewarded)

SM theory to-do list for LHC

- work together to assemble the basic set of "Standard Model Candles", with fully documented uncertainties
- compute a whole bunch of critical processes at NLO + EW corrections, and a few at NNLO
- finish and validate the new tools that will be used for LHC analyses (Herwig++, Pythia8, MC@NLO, Sherpa, MCFM, Vircol, Alpgen, etc etc)
- make the tools modular and document them

note: nobody will discover anything at LHC unless (most of) this gets done

Stefano Frixione, Les Houches 05

SM benchmarks for the LHC start

A key point: standard candles must be fully understood by LHC experiments to believe any claim of new physics (unless spectacularly clear)

- ► $t\bar{t}$ production
- ▶ W and Z production (possibly with jets)
- Single-inclusive jet and dijet production
- Photon and di-photon production

Issues to be addressed here:

- Predicted cross sections, and their uncertainties
- Standard candles as luminometers

Some remarks:

- Must improve understanding of power-suppressed effects in jet production
- Single-inclusive photons still not well understood
- For which processes do we really need NNLO results?

-4

Stefano Frixione, Les Houches 05

W and Z production

Theoretical predictions under fairly good control

- Fully-differential NNLO results
- NLO results matched with parton showers
- \blacktriangleright q_T , joint resummations
- \blacktriangleright W + n jets observables sensibly predicted by Monte Carlos
- EW corrections available (more later)

Best candidates as luminometers? We do need precision here, if we have to improve mass measurements of LEP and Tevatron

Stefano Frixione, Les Houches 05

PDF uncertainties

Pre-LHC results from Tevatron and HERA are essential. Recent progress

- Three-loop AP kernels computed exactly (Moch, Vermaseren, Vogt)
- PDF uncertainties are routinely used

Issues to be addressed here:

- ► How will HERA II and Tevatron Run II improve the current situation?
- ▶ Will we be able to get a consistent NNLO picture by the start of LHC?
- Do we need it?
- ► Are EW corrections relevant? If so, for which processes? (estimate $\Delta PDF \sim 0.3\%(1\%)$ for x < 0.1(0.4))

Systematic comparisons between CTEQ and MRST will be made during the workshop (other sets with errors?)

1 (Many-)Particle production at NLO

Stefan Dittmaier, Les Houches 05

A lot of processes with $n \geq 3$ particles in final states only known at LO

 \hookrightarrow enormous amount of homework for theorists

State-of-the-art for NLO in theory:

• techniques for $2 \rightarrow 3$ processes established; results known for several processes at hadron colliders:

 $pp \rightarrow 3jets, V+2jets, Vb\bar{b}, \gamma\gamma+jet, t\bar{t}H, b\bar{b}H$

- \hookrightarrow calculations still demanding
- $2 \rightarrow 4$ processes are technical frontier;
 - only two results for EW corrections in $\mathrm{e^+e^-}$ physics:

 $e^+e^- \rightarrow \nu \bar{\nu} HH$,

Poulome et al.) '04

 $e^+e^- \rightarrow 4f$ Denner et al. '05

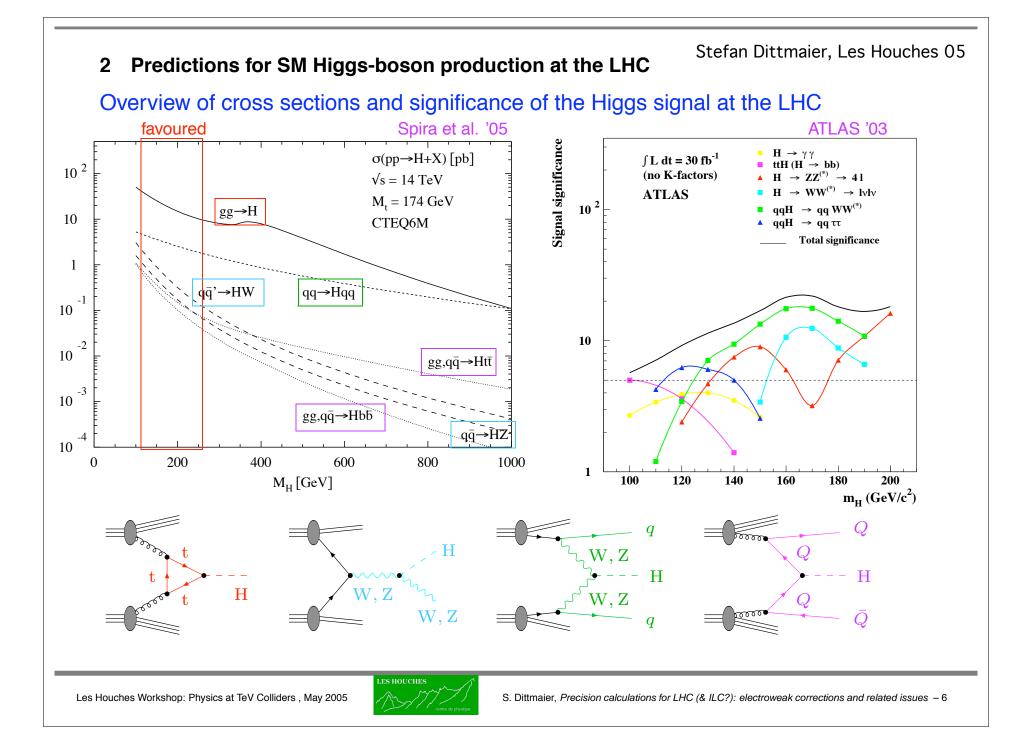
GRACE-1loop (Boujema et al.) '04

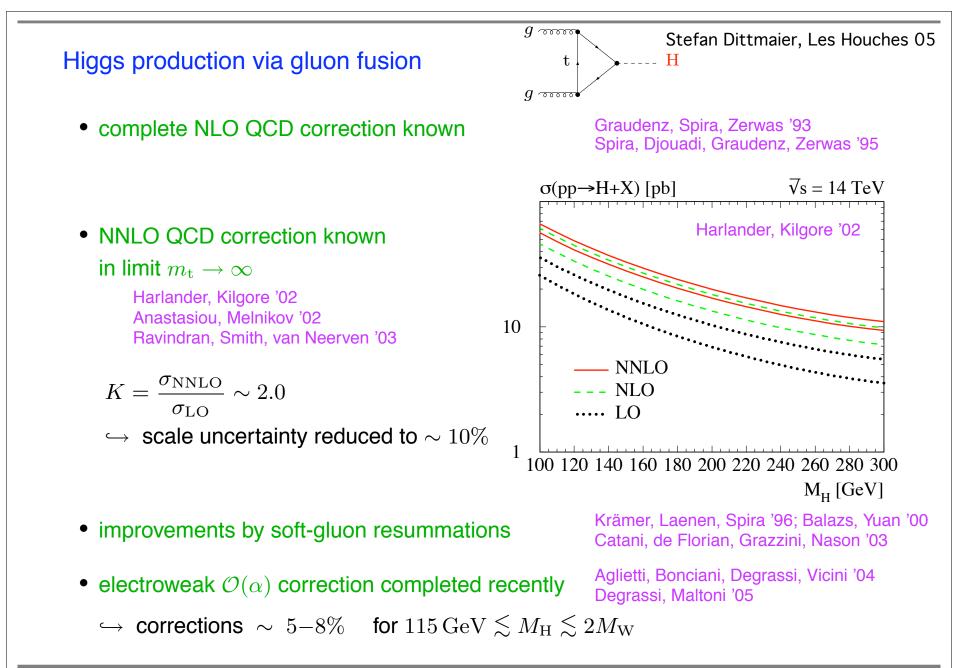
+ some partial or toy-model results

Bern et al., Binoth et al.

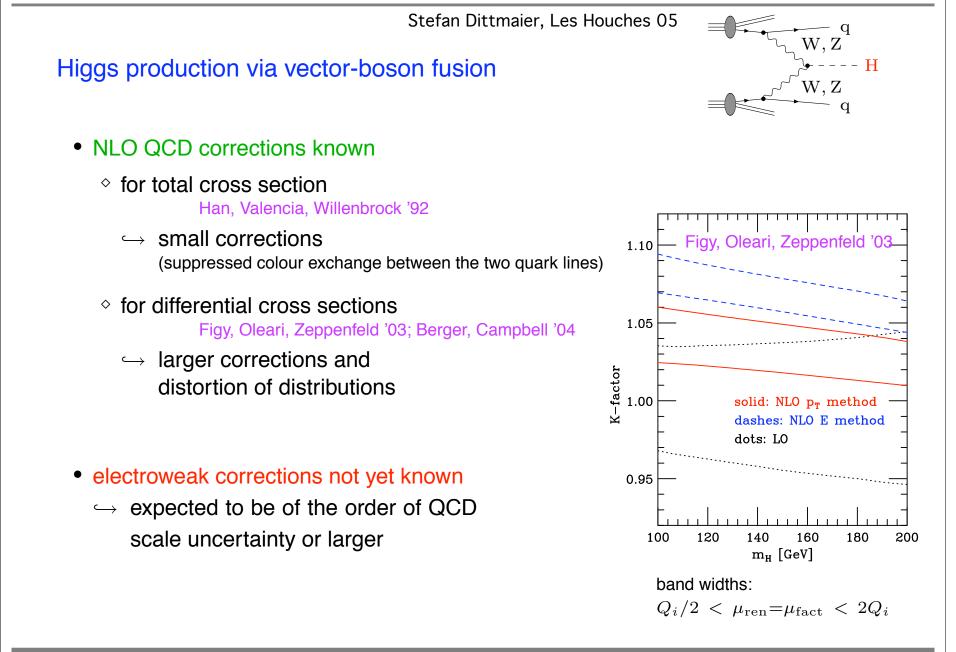
- \hookrightarrow calculations very challenging + lengthy !
- ⇒ Theorists need a clear list of important processes including arguments for "why calculating what !?"

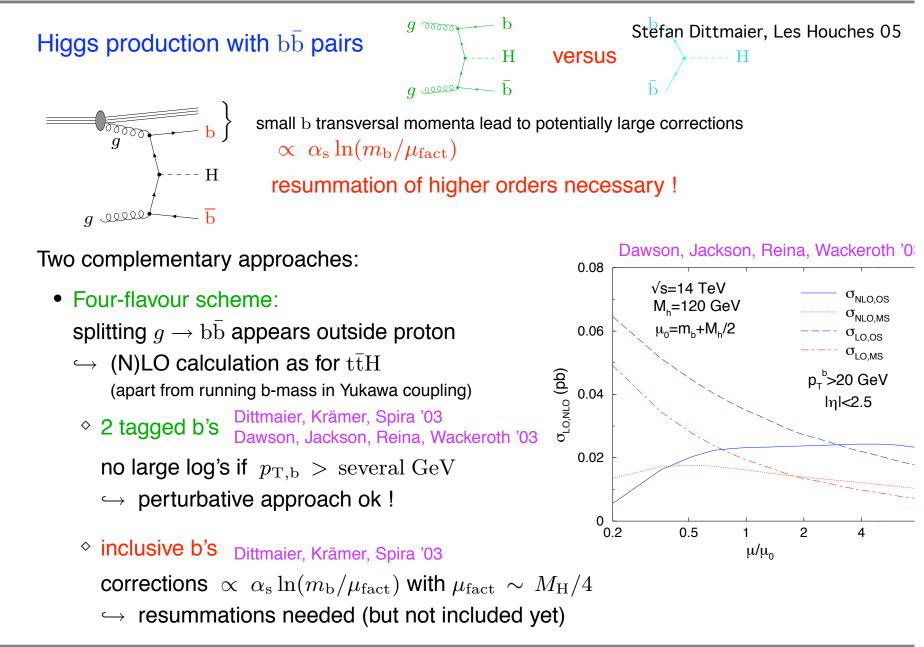
Joey Huston's wish list:


Experimental priority list


- Note have to specify how inclusive final state is
 - ▲ what cuts will be made?
 - ▲ how important is b mass for the observables?
- How uncertain is the final state?
 - ▲ what does scale uncertainty look like at tree level?
 - new processes coming in at NLO?
- Some information may be available from current processes
 - pp->tT j may tell us something about pp->tTbB?
 - ▲ j=g->bB
 - CKKW may tell us something about higher multiplicity final states

- 1. pp->WW jet
- 2. pp->tT bB
 - background to tTH
- 3. pp->tT + 2 jets
 - 1. background to tTH
- 4. pp->WWbB
- 5. pp->V V + 2 jets
 - 1. background to WW->H->WW
- 6. pp->V + 3 jets
 - 1. beneral background to new physics
- 7. pp->V V V
 - 1. background to SUSY trilepton


Beyond the SM Workshop at Columbia



summary of BSM frameworks for EWSB:

summary of BSM frameworks for EWSB:

there are too many models

none of them are any good

the General Motors approach to model building

- build as many different kinds of models as you can dream up
- advertise them heavily
- get the customers to buy a new one before they have a chance to figure out that the last model you sold them was a lemon

what do we really think?

- there is a Higgs
- it is probably lighter than 200 GeV
- the Higgs sector is probably not simple
- the Higgs naturalness problem is solved by new physics at the TeV scale
- SUSY with radiative EWSB is probably involved
- SUSY gauge coupling unification, and $m_t\simeq \langle v\rangle/\sqrt{2}$ are probably not coincidences
- SUSY is only part of the answer
- there is room for big surprises

what do we need to know about Higgs?

- what is its mass?
- how does it couple to SM particles?
- who else does it couple to?
- what other scalars does it does it mix with?
- is it a composite?
- is it a CP eigenstate?
- why is it light?
- what does it tell us about new physics at the TeV scale?
- what does it tell us about new physics at higher scales?

what are we getting nervous about?

- why haven't we already seen clear/clearer signals of new TeV scale physics?
- if SUSY, why haven't we already seen the Higgs?
- is the new stuff all heavy, or is some of it light but you have to be more clever to see it?
- why is flavor such a mess?
- why doesn't string theory help us understand anything?
- what does dark energy mean for particle physics?

the history of tuning

the Philco

the push button car radio

the scanner

tuned or scanned?

- if your "fundamental" theory has unexplained tunings or hierarchies, usually means that you are missing some underlying mechanism
- but not always: sometimes it just means that you are mistaken about which observables are "fundamental", e.g. earth-sun distance
- is there a criterion for the exceptions in particle physics?

is the MSSM fine tuned?

no Higgs at LEP -> heavy-ish stop, no direct or indirect signs of superpartners (except g-2?)

but this formula still has to hold:

$$M_Z^2 = -1.8\mu^2(\text{UV}) + 5.9M_3^2(\text{UV}) - 0.4M_2^2(\text{UV}) - 1.2m_{H_U}^2(\text{UV}) + 0.9m_{Q_3}^2(\text{UV}) + 0.7m_{U_3}^2(\text{UV}) - 0.6A_t(\text{UV})M_3(\text{UV}) - 0.1A_t(\text{UV})M_2(\text{UV}) + 0.2A_t^2(\text{UV}) + 0.4M_2(\text{UV})M_3(\text{UV}) + .$$

looks like this requires ~1% cancellations of the high scale mu term and soft SUSY parameters

is the MSSM fine tuned?

- the MSSM has 124 parameters
- the real high scale SUSY theory presumably has fewer
- matching this to the MSSM will produce "mysterious" relations between the MSSM parameters, at the high scale

$$M_Z^2 = -1.8\mu^2(\text{UV}) + 5.9M_3^2(\text{UV}) - 0.4M_2^2(\text{UV}) - 1.2m_{H_U}^2(\text{UV}) + 0.9m_{Q_3}^2(\text{UV}) + 0.7m_{U_3}^2(\text{UV}) - 0.6A_t(\text{UV})M_3(\text{UV}) - 0.1A_t(\text{UV})M_2(\text{UV}) + 0.2A_t^2(\text{UV}) + 0.4M_2(\text{UV})M_3(\text{UV}) + ...$$

such relations are not tunings

is the MSSM fine tuned?

- the problem is that nobody has a believable model to relate, e.g. the μ parameter to ${\bf M_3}$
- and the RGE running down from the high scale is (usually) a pretty big effect -> "fine" tuning
- combining the above, it has become fashionable to call the MSSM fine tuned.

$$M_Z^2 = -1.8\mu^2(\text{UV}) + 5.9M_3^2(\text{UV}) - 0.4M_2^2(\text{UV}) - 1.2m_{H_U}^2(\text{UV}) + 0.9m_{Q_3}^2(\text{UV}) + 0.7m_{U_3}^2(\text{UV}) - 0.6A_t(\text{UV})M_3(\text{UV}) - 0.1A_t(\text{UV})M_2(\text{UV}) + 0.2A_t^2(\text{UV}) + 0.4M_2(\text{UV})M_3(\text{UV}) + \dots$$

possible solutions

- tree level UV relations, with no tuning; in this case we are running out of room and superpartners should be discovered soon
 Kane, JL, Nelson, Wang
- the "high scale" is not so high, e.g. 10-100 TeV Casas, Espinosa, Hidalgo; Harnik, Kribs, Larson, Murayama; Nomura, Tweedie
- the Higgs sector of the SSM is not minimal
- the superpartners are all 10 TeV but the EW scale is determined by something else, e.g. little Higgs
- there are 10¹²⁰ parallel universes, so anything can happen, e.g. split SUSY

nonminimal SSM as a Higgs mass booster

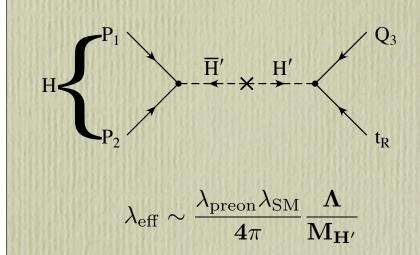
- you expect a nonminimal SSM anyway
- the only problem is that there are many possibilities
- nicely summarized in recent paper of Batra, Delgado, Kaplan, and Tait:

nonminimal SSM as a Higgs mass booster

- want to increase the tree level value of the Higgs quartic coupling
- e.g. the NMSSM has a singlet S: if S is light, it solves the mu problem; if it is heavy, integrating it out gives a Higgs quartic coupling $\lambda_s SH\bar{H} \rightarrow |\lambda_s|^2 |H\bar{H}|^2$
- other singlets or SU(2) triplets could also do this
- new gauge interactions in the Higgs sector, U(1) or nonabelian, could also do this, from new D terms

- problem: the contributions to the Higgs quartic coupling are infrared free
- so you will hit a Landau pole at some energy scale
- making the Higgs heavier will tend to make this energy scale lower
- e.g. in the pure NMSSM version, avoiding the Landau pole up to the GUT scale restricts $\, {\bf m_h} < \, 160 \; {\rm GeV}$
- one solution is extra nonabelian gauge interactions that give asymptotically free contributions; this can raise the Higgs mass bound to 250 - 350 GeV.
- another solution is that there is Higgs compositeness/ new strong dynamics, at a lower scale...

fat Higgs


Harnik, Kribs, Larson, Murayama

Superfields	$SU(2)_L$	$SU(2)_H$
$(T^1, T^2) \equiv T$	2	2
(T^3, T^4)	1	2
(T^5, T^6)	1	2
Р	2	1
\overline{Q}	1	1
S	1	1
S'	1	1

- SUSY + gauge coupling unification
- but add new strong interaction at an intermediate scale $\Lambda \sim 1000 \ {\rm TeV}$
- produces 4 neutral and 2 charged Higgs as mesons of the confining (almost superconformal) theory
- lightest Higgs can be 450 GeV
- nonstandard production, e.g.

 $gg \to h \quad \text{ but not } \quad \mathbf{q}\mathbf{q} \to \mathbf{W}\mathbf{h}$

fat Higgs, fat top

	$SU(3)_s$	$SU(3)_c$	$SU(2)_W$	$U(1)_Y$	Z_2
P_3			1	0	+
P_1		1	1	-2/3	-
\overline{P}_2		1		+1/6	8 <u>8</u> 48
\overline{P}_1		1	1	+2/3	+
$\overline{P}_{\tilde{1}}$		1	1	-1/3	-
P'		1	1	+1/3	-
\overline{P}'		1	1	-1/3	4

how to generate SM fermion masses?

Delgado, Tait

- introduce heavy fundamental Higgs doublets with Yukawa couplings to both SM fermions and the preons
- problem: $\mathbf{m_t}\simeq \langle \mathbf{v}\rangle/\sqrt{2}$ is now a complete coincidence
- solution: tweak the strong dynamics and preon content to get composite t_L , b_L , t_R

CP violation

 $0.015(0.011) \lesssim \Omega_B h^2 \lesssim 0.026(0.038)$

- we need new sources of CP violation to explain the basic fact of our own existence
- from Sakharov, good to look where you also already have sources of B or L violation, plus the possibility of it all happening out of thermal equilibrium
- two good prospects:

* leptogenesis from heavy neutrinos

* electroweak baryogenesis

electroweak baryogenesis

- in the EW phase transition, violation of B+L comes for free from sphalerons
- the big challenges are:

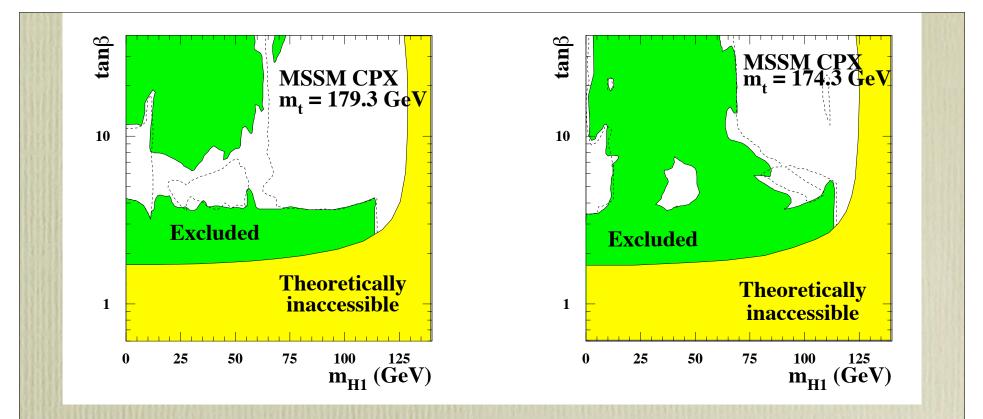
* identify a new source of large CP violation in the EW sector, Arg(phases) ~ 0.1 - 1

* make the EW phase transition strongly enough first order, to get out of equilibrium

CP violating SUSY

reviewed in Phys. Rep. by Chung, Everett, Kane, King, JL, Wang

- the MSSM has 43 new physical phases, coming from the sfermion mixings, and other soft parameters:
- the 1st+2nd generation phases are constrained to have arg <~ .01 - .00001 by FCNC data
- the phases relevant to EW baryogenesis are constrained by nonobservation of EDMs
- estimates of upper bounds on these phases range from .01 to 1
- can also relax EDM constraints by assuming 1st+2nd gen. sfermions have multi-TeV masses


CP violating SUSY

- we need better convergence on what the EDMs imply for MSSM electroweak baryogenesis
- ditto for MSSM extensions
- a new round of EDM experiments in the next few years are supposed to have 10 -100 times better sensitivity
- if EW baryogenesis makes any sense, these expts should see EDMs.

CP violating SUSY Higgs

for more info, see talks at TeV4LHC and Les Houches 05

- CP violation creates important challenges for sparticle production and decay at LHC
- CP violating SUSY will feed into the MSSM Higgs sector at the loop level
- CPV in the MSSM means $~\mathbf{h_0},~\mathbf{H_0},~\mathbf{A_0} \rightarrow \mathbf{h_1},~\mathbf{h_2},~\mathbf{h_3}$
- CPV in the NMSSM means $\mathbf{h_0}, \mathbf{H_0}, \mathbf{A_0}, \mathbf{S} \rightarrow \mathbf{h_1}, \mathbf{h_2}, \mathbf{h_3}, \mathbf{h_4}, \mathbf{h_5}$
- could have big impact on both Higgs production and decay

- in the CPX MSSM scenario, $\mathbf{ZZh_1}$ coupling is suppressed, $\mathbf{Zh_2}$ production is kinematically marginal
- conclusion for LEP depends on whether you use a D0 or a CDF top mass

electroweak baryogenesis

* identify a new source of large CP violation in the EW sector, Arg(phases) ~ 0.1 - 1

* make the EW phase transition strongly enough first order, to get out of equilibrium

- in first challenge, big question is what SUSY models give large enough phases w/o violating EDM bounds
- in second challenge, big question is how to sift through many possibilities:

ways to make the EW phase transition more strongly first order

- a very light Higgs (ruled out by LEP?)
- a light stop Carena, Quiros, Wagner
- trilinear scalar couplings in extended Higgs sector Kang, Langacker, Li, Liu
- low scale cutoff induces dimension 6 operator in the Higgs potential Grojean, Servant, Wells
- new TeV scale fermions with strong couplings to Higgs Carena, Megevand, Quiros, Wagner
- slinky inflation gives a larger expansion rate during the EW phase transition Barenboim, JL

not-so-little Higgs

- Little Higgs models with conserved T parity are alive and well and add to the "confusion" problem for LHC Hubisz, Meade
- Little Higgs models w/o T parity have generic problems with precision EW constraints
- new strategy (Katz, Nelson, Walker): retreat to "intermediate" Higgs models
- just add new vectorlike quarks to cancel the 1-loop top quark quadratic divergence, forget about cancelling the gauge boson contributions
- gives a natural theory for a cutoff scale up to 6 TeV

less Higgslessness

- Higgless models arise from the observation that the Kaluza-Klein mechanism is an alternative to the Higgs mechanism, saturating the same sum rules that restore unitarity to the SM
- 5d warped Higgless models, and "deconstructed" 4d relatives, have been much studied
- they have generic problems with precision EW data
- the experts are now pushing:
- 5d warped models with an extra TeV brane and AdS_5 bulk space, just for the third generation Cacciapaglia, Csaki, Grojean, Reece, Terning
- deconstucted models with delocalized fermions
- this does not look good... Chivukula, Simmons, He, Kurachi, Tanabashi

prophesy

- EWSB is an old problem, but it won't be solved by old people
- new heroes will emerge in the golden era of the LHC