Weak Interactions and Neutrinos in the LHC Era

- The standard model
- Testing the standard model
- Problems
- Beyond the standard model
- Where are we going?

The New Standard Model

Standard model, supplemented with neutrino mass (Dirac or Majorana):

 $SU(3) \times SU(2) \times U(1) \times$ classical relativity

- Mathematically consistent field theory of strong, weak, electromagnetic interactions
- Gauge interactions correct to first approximation to 10^{-16} cm
- Complicated, free parameters, fine tunings ⇒must be new physics

- Many special features usually not maintained in BSM
 - $m_{\nu} = 0$ in old standard model (need to add singlet fermion and/or triplet Higgs and/or higher dimensional operator (HDO))
 - Yukawa coupling $h \propto gm/M_W \Rightarrow$ flavor conserving and small for light fermions (partially maintained in MSSM and simple 2HDM)
 - No FCNC at tree level (Z or h); suppressed at loop level (SUSY loops; Z' from strings, DSB)
 - Suppressed off-diagonal \$\nothinspace{P\$; highly suppressed diagonal (EDMs)}\$
 (SUSY loops, soft parameters, exotics)
 - B, L conserved perturbatively (B L non-perturbatively) (GUT (string) interactions, \mathbb{R}_p)

Quantum Chromodynamics (QCD)

Modern theory of the strong interactions

- Quark model/ color/ confinement
- Low energy symmetries (+ realization, breaking) $(SU(3)_L \times SU(3)_R)$
- Hadronic models: Yukawa, Regge, dual resonance (→ strings)
- Asymptotic freedom (weak coupling at high energy)

Relation of "running" α_s at different scales

Quantum Electrodynamics

Experiment	Value of $lpha^{-1}$		Difference from $\alpha^{-1}(a_{e})$
Deviation from gyromagnetic	$137.035 \ 999 \ 58 \ (52)$	$[3.8 imes 10^{-9}]$	_
ratio, $a_{oldsymbol{e}}=(g-2)/2$ for e^{-1}			
ac Josephson effect	$\boldsymbol{137.035} \ \boldsymbol{988} \ \boldsymbol{0} \ (\boldsymbol{51})$	$[3.7 imes10^{-8}]$	$(0.116 \pm 0.051) \times 10^{-4}$
$h/m_n \ (m_n \ { m is \ the \ neutron \ mass})$ from $n \ { m beam}$	$137.036 \ 011 \ 9 \ (51)$	$[3.7 imes 10^{-8}]$	$(-0.123 \pm 0.051) \times 10^{-4}$
Hyperfine structure in muonium, $\mu^+ e^-$	137.035 993 2 (83)	$[6.0 \times 10^{-8}]$	$(0.064 \pm 0.083) \times 10^{-4}$
Cesium D_1 line	${\bf 137.035} \ {\bf 992} \ {\bf 4} \ ({\bf 41})$	$[3.0 imes 10^{-8}]$	$(0.072 \pm 0.041) \times 10^{-4}$

The Electroweak Theory

- QED and weak charged current unified
- Weak neutral current predicted
- Stringent tests of wnc, Z-pole and beyond
- Fermion gauge and gauge self interactions

- SM correct and unique to zeroth approx. (gauge principle, group, representations)
- SM correct at loop level (renorm gauge theory; m_t , α_s , M_H)
- TeV physics severely constrained (unification vs compositeness)
- Consistent with light elementary Higgs
- Precise gauge couplings (gauge unification)

- Heavy *B* decays and *CP* violation
 - CKM (quark mixing) $\rightarrow CP$ breaking
 - Unitarity triangle
 - Search for new physics
 - Anomalies in electroweak penguins?
 - Baryogenesis?

Problems with the Standard Model

Lagrangian after symmetry breaking:

$$egin{aligned} \mathcal{L} &= & L_{ ext{gauge}} + L_{ ext{Higgs}} + \sum_i ar{\psi_i} \left(i \; \partial \!\!\!\!/ - m_i - rac{m_i H}{
u}
ight) \psi_i \ &- & -rac{g}{2\sqrt{2}} \left(J_W^\mu W_\mu^- + J_W^{\mu\dagger} W_\mu^+
ight) - e J_Q^\mu A_\mu - rac{g}{2\cos heta_W} J_Z^\mu Z_\mu \end{aligned}$$

Standard model: $SU(2) \times U(1)$ (extended to include ν masses) + QCD + general relativity

Mathematically consistent, renormalizable theory

Correct to 10^{-16} cm

WIN 05 (June 11, 2005)

However, too much arbitrariness and fine-tuning: O(27) parameters (+ 2 for Majorana ν) and electric charges

- Gauge Problem
 - complicated gauge group with 3 couplings
 - charge quantization ($|q_e| = |q_p|$) unexplained
 - Possible solutions: strings; grand unification; magnetic monopoles (partial); anomaly constraints (partial)

• Fermion problem

- Fermion masses, mixings, families unexplained
- Neutrino masses, nature? Probe of Planck/GUT scale?
- CP violation inadequate to explain baryon asymmetry
- Possible solutions: strings; brane worlds; family symmetries; compositeness; radiative hierarchies. New sources of CP violation.

- Higgs/hierarchy problem
 - Expect $M_H^2 = O(M_W^2)$
 - higher order corrections: $\delta M_H^2/M_W^2 \sim 10^{34}$

Possible solutions: supersymmetry; dynamical symmetry breaking; large extra dimensions; Little Higgs; anthropically motivated finetuning (split supersymmetry) (landscape)

- Strong CP problem
 - Can add $\frac{\theta}{32\pi^2}g_s^2F\tilde{F}$ to QCD (breaks, P, T, CP)
 - $d_N \Rightarrow heta < 10^{-9}$, but $\delta heta ert_{
 m weak} \sim 10^{-3}$
 - Possible solutions: spontaneously broken global U(1) (Peccei-Quinn) \Rightarrow axion; unbroken global U(1) (massless u quark); spontaneously broken CP + other symmetries

• Graviton problem

- gravity not unified
- quantum gravity not renormalizable
- cosmological constant: $\Lambda_{
 m SSB}=8\pi G_N \langle V
 angle> 10^{50}\Lambda_{
 m obs}~(10^{124}$ for GUTs, strings)
- Possible solutions:
 - * supergravity and Kaluza Klein unify
 - * strings yield finite gravity.
 - * **A**? Anthropically motivated fine-tuning (landscape)?

- Necessary new ingredients
 - Mechanism for small neutrino masses
 - * Planck/GUT scale?
 - Mechanism for baryon asymmetry?
 - * Electroweak transition (Z' or extended Higgs?)
 - * Heavy Majorana neutrino decay (seesaw)?
 - * Decay of coherent field? CPT violation?

- What is the dark energy?
 - * Cosmological Constant? Quintessence?
 - * Related to inflation? Time variation of couplings?
- What is the dark matter?
 - * Lightest supersymmetric particle? Axion?
- Suppression of flavor changing neutral currents? Proton decay? Electric dipole moments?
 - * Automatic in standard model, but not in extensions

Beyond the Standard Model

- The Whimper: A new layer at the TeV scale
- The Hybrid: low fundamental scale/large extra dimensions
- The Bang: unification at the Planck scale, $M_P = G_N^{-1/2} \sim 10^{19}~{
 m GeV}$

Typical				
Model	scale (GeV)	Motivation		
New W s, Z s, fermions, Higgs	$10^2 - 10^{19}$	Remnant of something else		
Family symmetry	$10^2 - 10^{19}$	Fermion (No compelling models)		
Composite fermions	$10^2 - 10^{19}$	Fermion (No compelling models)		
Composite Higgs	10^{3} – 10^{4}	Higgs (No compelling models)		
Composite W, Z (G, γ ?)	$10^3 - 10^4$	Higgs (No compelling models)		
Little Higgs	10^{3} – 10^{4}	Higgs		
Large extra dimensions ($d>4$)	$10^3 - 10^6$	Higgs, graviton		
New global symmetry	$10^8 - 10^{12}$	Strong CP		
Kaluza–Klein	10^{19}	Graviton		
Higgs (0) \Leftrightarrow gauge (1) \Leftrightarrow Graviton (2) ($d > 4$)				
Grand unification	$10^{14} - 10^{19}$	Gauge		
Strong \Leftrightarrow electroweak				
Supersymmetry/supergravity	$10^2 - 10^{19}$	Higgs, graviton		
Fermion ⇔ boson				

- Onion-like layers
- Composite fermions, scalars (dynamical sym. breaking)
- Not like to atom \rightarrow nucleus $+e^- \rightarrow p + n \rightarrow$ quark
- Other new TeV layer: Little Higgs
- At most one more layer accessible (Tevatron, LHC, ILC)
- Rare decays (e.g., $K \rightarrow \mu e$)
- Typically, few % effects at LEP/SLC, WNC (challenge for models)
- anomalous VVV, new particles, future $WW \rightarrow WW$, FCNC, EDM

WIN 05 (June 11, 2005)

Large extra dimensions (deconstruction, brane worlds)

- Can be motivated by strings, but new dimensions much larger than $M_P^{-1} \sim 10^{-33}~{
 m cm}$
- Fundamental scale $M_F \sim 1 100$ TeV $\ll \bar{M}_{Pl} = 1/\sqrt{8\pi G_N} \sim 2.4 \times 10^{18}$ GeV
 - Assume δ extra dimensions with volume $V_\delta \gg M_F^{-\delta}$

 $ar{M}_{Pl}^2 = M_F^{2+\delta} V_\delta \gg M_F^2$

(Introduces new hierarchy problem)

- Black holes, graviton emission at colliders!
- Macroscopic gravity effects
- Astrophysics

- Unification of interactions
- Grand desert to unification (GUT) or Planck scale
- Elementary Higgs, supersymmetry (SUSY), GUTs, strings
- Possibility of probing to M_P and very early universe

Supersymmetry

- Fermion ↔ boson symmetry
- Motivations
 - stabilize weak scale $\Rightarrow M_{SUSY} < O(1 \text{ TeV})$ (but recent high scale ideas)
 - supergravity (gauged supersymmetry): unification of gravity (non-renormalizable)
 - coupling constants in supersymmetric grand unification
 - decoupling of heavy particles (precision)

• Consequences

- additional charged and neutral Higgs particles
- $\begin{array}{ll} \ M_{H^0}^2 < \cos^2 2\beta M_Z^2 + \ {\rm H.O.T.} \\ (O(m_t^4)) & < \ ({\rm 150} \ \ {\rm GeV})^2, \\ {\rm consistent \ with \ LEP} \end{array}$
 - * cf., standard model: $M_{H^0} < {\overset{\tilde{g}}{\downarrow}}$ 1000 GeV

• Superpartners

- $q \Rightarrow \tilde{q}$, scalar quark
- $-\ell \Rightarrow \tilde{\ell}$, scalar lepton
- $W\Rightarrow ilde{w}$, wino
- typical scale: several hundred GeV
- LSP: cold dark matter candidate
- SUSY breaking \Leftrightarrow large m_t
- May be large FCNC, EDM, $\Delta(g_{\mu}-2)$

Experiment

Theory

170

160

150

Paul Langacker (Penn)

Grand Unification

- Unify strong SU(3) and electroweak $SU(2) \times U(1)$ in simple group, broken at $\sim 10^{16} \text{ GeV}$
- Gauge unification (only in supersymmetric version)

- Seesaw model for small m_{ν} (but why are mixings large?)
- Quark-lepton (q l) unification (\Rightarrow charge quantization)
- q l mass relations (work only for third family in simplest versions)
- Proton decay? (simplest versions excluded)
- Doublet-triplet problem?
- String embedding? (breaking, families may be entangled in extra dimensions)

Superstrings

- Finite, "parameter-free" "theory of everything" (TOE), including quantum gravity
 - 1-d string-like object
 - Appears pointlike for resolution $> M_P^{-1} \sim 10^{-33}~{\rm cm}$
 - Vibrational modes \rightarrow particles
 - Consistent in 10 spacetime dimensions \rightarrow 6 must compactify to scale M_P^{-1}
 - 4-dim supersymmetric gauge theory below M_P
 - May also be solitons (branes), terminating open strings

• Problems

- Which compactification manifold?
- Supersymmetry breaking? Cosmological constant?
- Many moduli (vacua). Landscape ideas is there any predictability left?
- Relation to supersymmetric standard model, GUT?
- Need theoretical progress and hints from experiment
 - TeV scale remnants, such as Z', extended Higgs, exotics
 - SUSY breaking patterns
 - Need very precise masses and couplings \rightarrow International Linear Collider

Future/present Experiments

- High energy colliders: the primary tool
 - The TEVATRON; Fermilab, 1.96 TeV $\bar{p}p$, exploration
 - The Large Hadron Collider (LHC); CERN, 14 TeV pp, high luminosity, discovery (Discovery machine for supersymmetry, R_p violation, string remnants (e.g., Z', exotics); or compositeness, dynamical symmetry breaking, Higgless theories, Little Higgs, large extra dimensions, \cdots)
 - The International Linear Collider (ILC), in planning; 500 GeV-1 TeV e^+e^- , cold technology, high precision studies (Precision parameters to map back to string scale)
- Also, CP violation (*B* decays, electric dipole moments), flavor changing neutral currents (e.g., $\mu \rightarrow e\gamma$, $\mu N \rightarrow eN$, $B \rightarrow \phi K_s$), neutrino physics

WIN 05 (June 11, 2005)

Neutrinos as a Unique Probe: $10^{-33} - 10^{+28}$ cm

- Particle Physics
 - $-\nu N, \mu N, eN$ scattering: existence/ properties of quarks, QCD
 - Weak decays $(n \rightarrow p e^- \bar{\nu}_e, \mu^- \rightarrow e^- \nu_\mu \bar{\nu}_e)$: Fermi theory, parity violation, mixing
 - Neutral current, Z-pole, atomic parity: electroweak unification, field theory, m_t ; severe constraint on physics to TeV scale
 - Neutrino mass: constraint on TeV physics, grand unification, superstrings, extra dimensions; seesaw: $m_{
 u} \sim m_a^2/M_{
 m GUT}$

- Solar/atmospheric neutrino experiments
 - Neutrinos have tiny masses (but large mixings)
 - Standard Solar model confirmed
 - First oscillation dips observed! (QM on large scale)

- 3 ν Patterns
- Solar: LMA (SNO, KamLAND)
- $-\Delta m_\odot^2 \sim 8{ imes}10^{-5}$ eV 2 , nonmaximal
- Atmospheric: $|\Delta m^2_{
 m Atm}| \sim 2 imes 10^{-3} \ {
 m eV^2}$, near-maximal mixing
- Reactor: U_{e3} small

Neutrino Implications/questions

- Key constituent of the Universe
- Why are the masses so small?
 - Planck/GUT scale? e.g., seesaw or generalization, $m_{\nu} \sim m_D^2/M_N$ (may not be generic in strings)
- Are the neutrinos Dirac or Majorana?
 - No SM gauge symmetry forbids Majorana (but string, extended?)
 - Neutrinoless double beta decay $(\beta\beta_{0\nu})$ (inverted or degenerate spectra)

Majorana

- What is the spectrum: number, mass scale/pattern, mixings
 - Scale: β decay (KATRIN), $\beta\beta_{0\nu}$, large scale structure (SDSS)
 - Mixings and CP: reactor, long baseline oscillation experiments, Solar
 - Pattern: long baseline, $\beta\beta_{0\nu}$, supernova
 - Number: LSND? MiniBooNE
- Leptogenesis?
- Relic neutrinos?
 - Indirect: Nucleosynthesis, large scale structure. Direct? (Z-burst?)

The Universe

• The concordance

- 5% matter (including dark baryons): CMB, BBN, Lyman α
- 25% dark matter (galaxies, clusters, CMB, lensing)
- 70% dark energy (Acceleration (Supernovae), CMB (WMAP))

Paul Langacker (Penn)

- What is the dark energy?
 - Vacuum energy (cosmological constant); time varying field (quintessence)?
 - High precision supernova survey (SNAP);
 CMB (Planck) Expansion History of the Universe

WIN 05 (June 11, 2005)

- What is the dark matter?
 - Lightest neutralino in supersymmetry (if R parity conserved)? Axion?
 - Direct searches: LHC, ILC; cold dark matter searches; high energy annihilation ν 's
 - Axion searches (resonant cavities)
 - Gravitation lensing (SNAP), CMB (Planck)

- Why is there matter and not antimatter?
 - $n_B/n_\gamma \sim 10^{-10}$, $n_{ar{B}} \sim 0$
 - Electroweak baryogenesis
 (extensions of MSSM)? Leptogenesis?
 Decay of heavy fields? CPT
 violation?

- The very beginning (inflation)
 - Relation to particle physics, strings, Λ ?
 - CMB (Planck); gravity waves (LISA)

WIN 05 (June 11, 2005)

Far-Out Stuff

• LIV, VEP (e.g., maximum speeds, decays, (oscillations) of HE $\gamma, \ e,$ gravity waves (ν 's))

Conclusions

- The standard model is the correct description of fermions/gauge bosons down to $\sim 10^{-16}~{\rm cm} \sim \frac{1}{1~{\rm TeV}}$
- EWSB: consistent with light elementary Higgs but not proved
- Standard model is complicated \rightarrow must be new physics
- Precision tests severely constrain new TeV-scale physics
- Promising theoretical ideas at Planck scale
- Promising experimental program at colliders, accelerators, low energy, cosmology
- Challenge to make contact between theory and experiment