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Outline

Possible (MHD) mechanisms to explain YSO jet origin

- Dynamical characteristics

Numerical MHD simulations of jet launching:
- Extended disk-winds

- Star-disk magnetic interaction and related outflows
(stellar winds, episodic ejections)

e Summary and conclusions



Possible (MHD) scenarios

e Extended disk-winds:

Plasma flowing along large scale

magnetic field distributed on large
radial extension of the accretion disk.

» Magnetospheric ejections:

= - Stellar winds

- X-Winds

- Episodic magnetospheric ejections
(CME-like)
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Disk wmd solutlons

e Zanni et al. (2007)
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 Confirm analytical models: need . =1 and o, = 1 to have a stationary solution

« Unsteady ejection still possible for smaller o, = 0.1: field advection dominates
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Ejection efficiencies consistent
with observations (Cabrit 2002)

Zz

Terminal speeds around 1-2 times
the escape velocity

I Simulated spatial scale too small to check rotation !

But specific angular momentum (A = 9) appropriate to reproduce rotation
measurements (see Ferreira et al. 2006)



Magnetospheric ejections:
Initial conditions

* Dipolar field aligned with the rotation
axis of the star ( )

 Resistive and viscous Keplerian accretion disk

N Cs
ReSIStIVIty N = Qm Cs —

Q2
: . Cs
Viscosit = —
y 4 Ay Cg Qk
o “star” ( ) modeled as
perfect conductor rotating with a
¢ period ( )

 MHD fluid equations solved with the PLUTO code (Godunov + CT method)



As seenin 3D...




Stellar wind + extended magnetosphere
(0, =1 a,=1

vin = 1)
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« Magnetosphere stays

connected up to a radius
=2 (R, = 1.6)

» The opened stellar and

disk fieldlines are separated
by a current sheet located
far from the star

» The disk viscosity is
efficient enough in the
connected region in order
to remove radially both the
disk and the stellar
angular momentum



Stellar wind: magnetic braking

* M ing = 1010 M_  yrt

wind
&l - Lever arm R,/R. =16

g - Slowly rotating star: no centrifugal thrust

Thermal driving: P, = 4% P,

Bl - Energy and angular momentum transport
dominated by the Poynting flux:

E _Rj ; o h Qu
=42 _055sin6? 2+ h X1 ~ 25 Wwhere f— —0.1
GM,/R. _ R2 JGML 3



Magnetospheric ejections |l
(0, =01 a,=0.1 vin=1)
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» Low accretion rate (lower viscosity) shows oscillations on longer timescale

« The torque associated with the closed magnetosphere spins-down the star!!!!
(combination of CME-Ilike ejections and substellar disk rotation)

o Stellar wind braking



Extended magnetosphere
(0, =1 a,=1 vin=1) o
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» Accretion rate (and “hot spot luminosity”) regularly oscillates with a
period (mismatch between magnetospheric and viscous torque)

« Even if part of the disk magnetically connected to the star beyond R_, the disk-
locked torque always spins up the star

* The star is always braked along the opened field lines:



Magnetospheric ejections
(0,,=0.1 a,=1 v/in=10)

All fieldlines beyond corotation

magnetic surface ( )
are opened

The current sheet is strong
and reconnection phenomena
can occur as well as episodic
mass outflows

t =191.0

CME-like ejection site close

to the base of the accretion
column




Magnetospheric ejections
(0,,=0.1 a,=1 v/in=10)

» Two types of outflows (beside the stellar wind):

- . extract angular
momentum both from the disk and the star

- (X-wind?): extract mass and
angular momentum from the disk

« CME-like ejection is mass dominated

 Disk outflow is Poynting-flux dominated



Summary

» Simulations of extended disk-winds:

- Confirmation of stationary models: equipartition field and strong (o = 1)

resistivity needed to obtain stationary state. Still problems with numerical
dissipation and boundary effects

- Non-stationary solutions: accretion-ejection still possible for smaller o
values. Redistribution of the magnetic flux, magnetic towers.

» Magnetic star-disk interaction — braking of the star rotation:

- Extended magnetosphere: highly inefficient

- Stellar winds: can provide a spin-down mechanism. Energy source?.

- CME-like ejections: can efficiently brake the star. Minimize viscous effects
and maximize the magnetic effects.



Dynamical characteristics

1000

Ferreira,
Dougados,
Cabrit (2006)

For a given footpoint r,
relation between toroidal
and poloidal speed:

2rVy Qo = V7 + 392575
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Extended disc winds, X-winds, and stellar winds occupy distinct
regions in the (V, — R V,) plane.



Magnetospheric ejections |l
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» Two types of outflows (beside the stellar wind):

- . extract angular
momentum both from the disk and the star

- (X-wind?): extract mass and
angular momentum from the disk

» CME-like ejection is mass dominated

 Disk outflow is Poynting-flux dominated
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Is everything ok?

Despite having the same disk parameters
(b» 0.6, a,»1, ¢»0.1), analytical
(Casse & Ferreira 2000) and numerical
solutions have different jet parameters

Analytical: Numerical:
k»2£ 102 k»0.1-0.3
A » 35 A»4-9
& »0.01 & » 0.09

Analytical solution less mass loaded and faster ( vy 00 = rg20vV 2\ — 3)

E> Problem of numerical diffusion at the disk surface ?
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