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• MHD formalism
analytical insight into the Grad-Shafranov equation

• example solutions



(scale =1000 AU, V∞ = afew100km/s)

Protostellar Jets in Context Rhodes, 8 July 2008



collimation at ∼100 Schwarzschild radii, γ∞ ∼ 10
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MHD (Magneto-Hydro-Dynamics)

Equations: Maxwell, Ohm, continuity, momentum, entropy

Their solutions describe the jet dynamics (acceleration–collimation)
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Partial Integration

• assumptions
– zero resistivity (ideal MHD)
– axisymmetry (∂/∂φ = 0)
– steady state (∂/∂t = 0)

• introduce the magnetic flux function A($ , z) = (1/2π)
∫∫

Bp · dS
The equation for a poloidal field-streamline is A($ , z) =const

• the full set of ideal MHD equations can be partially integrated to yield five
constants of motion:
¬ the mass-to-magnetic flux ratio ΨA

 the field angular velocity Ω
® the specific angular momentum L
¯ the total energy-to-mass flux ratio µc2

° the adiabat Q

The corresponding expressions give B ,V , ρ , P as functions of A.

• one equation remains to be solved, the transfield force-balance, or
Grad-Shafranov equation
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The Grad-Shafranov equation

a
∂2A

∂$2
+ 2b

∂2A

∂$∂z
+ c

∂2A

∂z2
+ d = 0 ,

where a , b , c , d are functions of A and its 1st order derivatives.

[variants: nonrelativistic, relativistic, force-free (pulsar equation), etc]

Nonlinear — Mixed type (elliptic-hyperbolic)

50 years after its derivation we only have:

• self-similar solutions

R self-similar if A = function of
$

G(θ)
[with θ = arctan($/z)]

θ self-similar if A = function of
$

G(R)
(with R =

√
$2 + z2)

• asymptotic analysis

• works where this equation is simply ignored! (prescribed flow-shape)

• simulations ending in a steady-state
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Solution characteristics

II

dl

ϖ

z A A+dA

By expansion the magnetic field minimizes its
energy under the condition of keeping the
magnetic flux constant.

$2Bp =
$2

2π$dl⊥
(BpdS︸ ︷︷ ︸

dA

) ∝ $

dl⊥
.

Expansion with increasing dl⊥/$ leads to
decreasing Poynting flux.

The expansion ends in a more-or-less uniform
distribution $2Bp ≈ A (in a quasi-monopolar
shape).
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The function S = $2Bp/2A

The expansion is controled by the decline of the function

S =
$|∇A|

2A
=

$2Bp

2A
=

π$2Bp∫∫
Bp · dS

S can be seen as
Bp

< Bz >
, or as

1
2
$|∇ lnA|

Examples:

A monopolar field A ∝ 1− cos θ has S = (1 + cos θ)/2.
A dipolar field A ∝ sin2 θ/r has S = (cos2 θ + sin2 θ/4)1/2.
A field with parabolic lines z ∝ $b has S = d lnΨ/d ln($2/z2/b).

Near the axis S ≈ 1, since the magnetic flux enclosed by the circle z =const,
$ =const scales as A ∝ $2.

As the flow expands S ↓ and S∞ ≈ 1/2.

A transition from S ≈ 1 to S∞ ≈ 1/2 means that A ∝ $2 changes to A ∝ $.
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Collimation

II

dl

ϖ

z A A+dA

Expansion←→ collimation:

Inner field lines become better aligned with the
rotation axis compared with outer ones.

This self-collimation goes along with the
expansion and the formation of a cylindrical
core.
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Acceleration
S is proportional to the Poynting flux.

Defining the constant of motion

σm =
AΩ2

ΨAEVmax
=

AΩ2(1 + E/c2)
ΨAE3/2

√
2 + E/c2

we find (by combining the integral relations)

Poynting
total energy flux

= σm

(
1− Vφ

$Ω

)
Vmax

Vp

Bp$
2

A
∝ Bp$

2

A

So, S ↓ means bulk acceleration.

E.g., a transition from S ∼ 1 to S ∼ 0.5 means that half of the energy flux
(initially in the electromagnetic field) is transfered to kinetic energy flux.
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Acceleration mechanisms

• thermal (due to ∇P )→ velocities up to Cs

• magnetocentrifugal (beads on wire)

– initial half-opening angle ϑ > 30o (only for cold flows)
– velocities up to . $iΩ

• relativistic thermal (thermal fireball – works for relativistic temperatures)
gives γ ∼ ξi, where ξ = enthalpy

mass× c2

• magnetic due to J ×B/c ∝ ∇($Bφ) — connected to S — it can give
Ekinetic up to the total E
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Komissarov, Vlahakis, Königl, & Barkov, in preparation

left: density/field lines, right: Lorentz factor/current lines (wall shape z ∝ $1.5)
Differential rotation→ slow envelope
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Uniform rotation→ γ increases with $
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a
a

S =
π$2Bp∫
B · dS

=
1
2

$|∇A|
A

a

where A =
1
2π

∫
B · dS a
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Distribution of the poloidal magnetic field lines across the jet

Protostellar Jets in Context Rhodes, 8 July 2008



Protostellar Jets in Context Rhodes, 8 July 2008



γ and γσ for wall-shapes:
z ∝ $ (left), z ∝ $1.5 (middle), z ∝ $2 (right)

In the conical γ ∼ $Ω/c, but small efficiency

In parabolic, Lorentz factor γ ∼ z/$ ∝ $1/2 ∝ R1/3 (middle)
and γ ∼ z/$ ∝ $ ∝ R1/2 (right)
efficiency ∼ 50%
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Summary

? magnetic fields provide a viable explanation of the dynamics of jets

[they extract energy and angular momentum (transfer them to matter) –
they collimate outflows and produce jets – in AGN jets they could explain
relatively large-scale acceleration and polarization/RM maps]

? the paradigm of MHD jets works in a similar way in all astrophysical jets

more than half of the Poynting flux is trasfered to kinetic energy flux

• if E/Mc2 � 1→ relativistic flow with γ∞ ∼ 0.5
E

Mc2

if E/Mc2 � 1→ nonrelativistic flow with V∞ ∼
√
E
M

• collimation goes along with the decrease of the Poynting flux
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