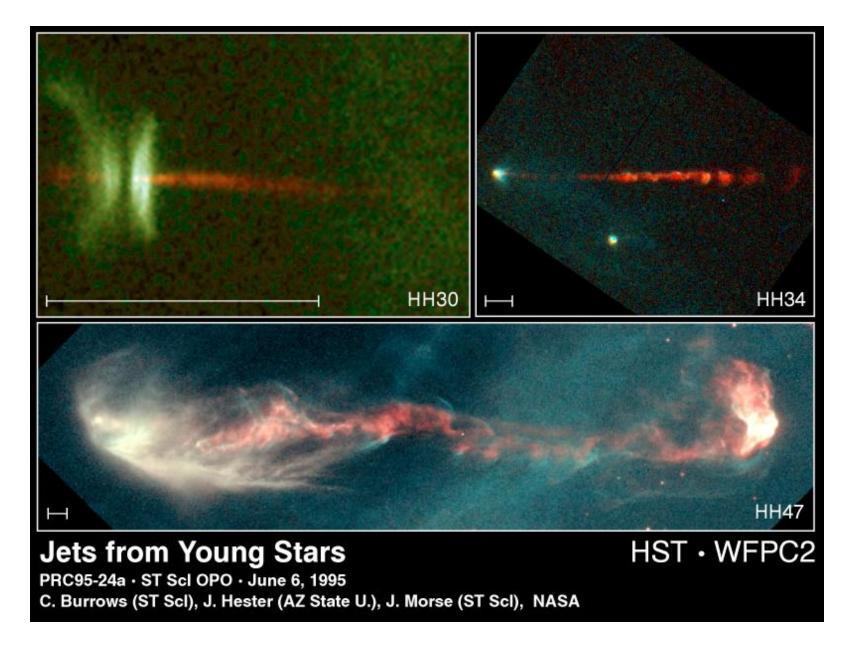
Jets in the MHD context

Nektarios Vlahakis University of Athens

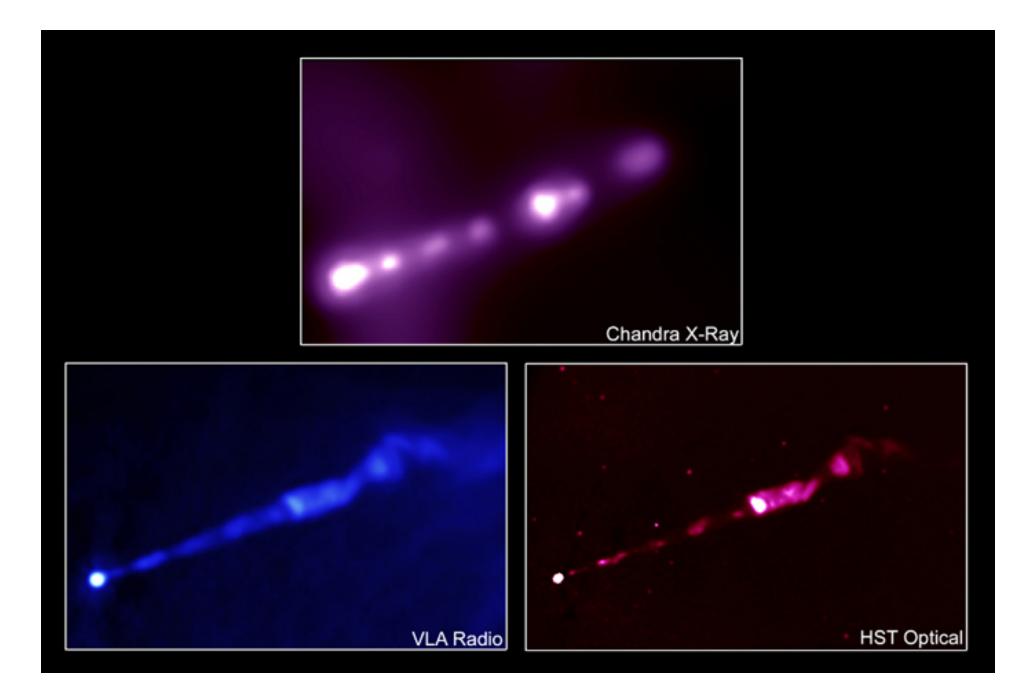
Outline

• MHD formalism analytical insight into the Grad-Shafranov equation

• example solutions



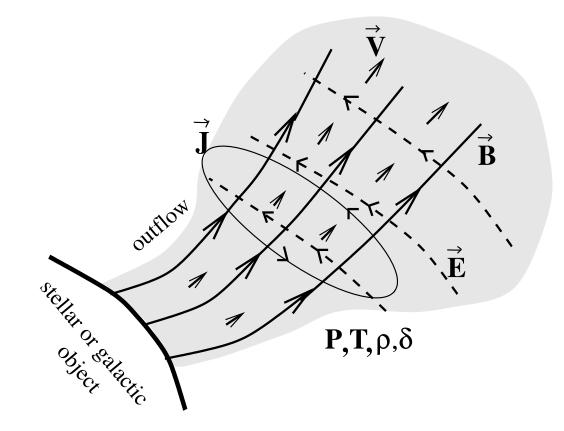
(scale =1000 AU, $V_{\infty} = a few 100$ km/s)



collimation at ~100 Schwarzschild radii, $\gamma_{\infty} \sim 10$

Protostellar Jets in Context

MHD (Magneto-Hydro-Dynamics)



Equations: Maxwell, Ohm, continuity, momentum, entropy

Their solutions describe the jet dynamics (acceleration–collimation)

Partial Integration

- assumptions
 - zero resistivity (ideal MHD)
 - axisymmetry $(\partial/\partial \phi = 0)$
 - steady state $(\partial/\partial t = 0)$
- introduce the magnetic flux function $A(\varpi, z) = (1/2\pi) \iint B_p \cdot dS$ The equation for a poloidal field-streamline is $A(\varpi, z) = \text{const}$
- the full set of ideal MHD equations can be partially integrated to yield five constants of motion:
 - 1 the mass-to-magnetic flux ratio Ψ_A
 - 2 the field angular velocity Ω
 - 3 the specific angular momentum L
 - (4) the total energy-to-mass flux ratio μc^2
 - \bigcirc the adiabat Q

The corresponding expressions give $\boldsymbol{B}, \boldsymbol{V}, \rho, P$ as functions of A.

 one equation remains to be solved, the transfield force-balance, or Grad-Shafranov equation

The Grad-Shafranov equation

$$a\frac{\partial^2 A}{\partial \varpi^2} + 2b\frac{\partial^2 A}{\partial \varpi \partial z} + c\frac{\partial^2 A}{\partial z^2} + d = 0,$$

where a, b, c, d are functions of A and its 1st order derivatives.

[variants: nonrelativistic, relativistic, force-free (pulsar equation), etc] Nonlinear — Mixed type (elliptic-hyperbolic)

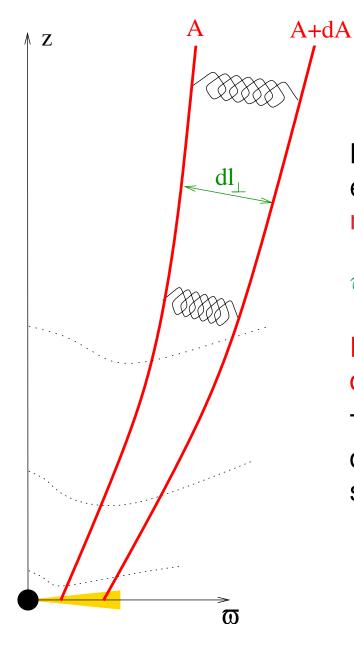
50 years after its derivation we only have:

• self-similar solutions

R self-similar if A =function of $\frac{\varpi}{G(\theta)}$ [with $\theta = \arctan(\varpi/z)$] θ self-similar if A =function of $\frac{\varpi}{G(R)}$ (with $R = \sqrt{\varpi^2 + z^2}$)

- asymptotic analysis
- works where this equation is simply ignored! (prescribed flow-shape)
- simulations ending in a steady-state

Solution characteristics



By expansion the magnetic field minimizes its energy under the condition of keeping the magnetic flux constant.

$$\varpi^2 B_p = \frac{\varpi^2}{2\pi \varpi dl_{\perp}} (\underbrace{B_p dS}_{dA}) \propto \frac{\varpi}{dl_{\perp}}.$$

Expansion with increasing dl_{\perp}/ϖ leads to decreasing Poynting flux.

The expansion ends in a more-or-less uniform distribution $\varpi^2 B_p \approx A$ (in a quasi-monopolar shape).

The function $S = \varpi^2 B_p/2A$

The expansion is controled by the decline of the function

$$\mathcal{S} = \frac{\varpi |\nabla A|}{2A} = \frac{\varpi^2 B_p}{2A} = \frac{\pi \varpi^2 B_p}{\iint \mathbf{B}_p \cdot d\mathbf{S}}$$

$${\mathcal S}$$
 can be seen as ${B_p\over < B_z>}$, or as ${1\over 2} arpi |
abla \ln A |$

Examples:

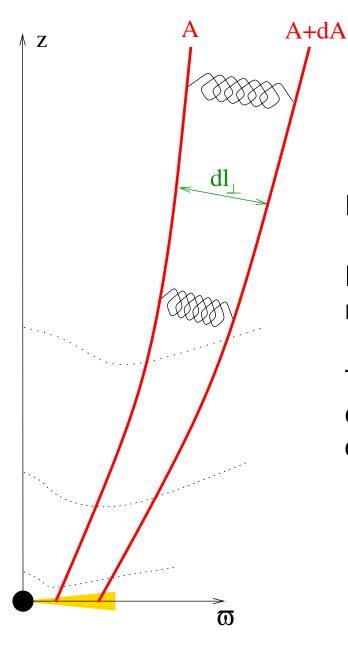
A monopolar field $A \propto 1 - \cos \theta$ has $S = (1 + \cos \theta)/2$. A dipolar field $A \propto \sin^2 \theta/r$ has $S = (\cos^2 \theta + \sin^2 \theta/4)^{1/2}$. A field with parabolic lines $z \propto \varpi^b$ has $S = d \ln \Psi/d \ln(\varpi^2/z^{2/b})$.

Near the axis $S \approx 1$, since the magnetic flux enclosed by the circle z = const, $\varpi = \text{const}$ scales as $A \propto \varpi^2$.

As the flow expands $S \downarrow$ and $S_{\infty} \approx 1/2$.

A transition from $S \approx 1$ to $S_{\infty} \approx 1/2$ means that $A \propto \varpi^2$ changes to $A \propto \varpi$.

Collimation



Expansion \longleftrightarrow collimation:

Inner field lines become better aligned with the rotation axis compared with outer ones.

This self-collimation goes along with the expansion and the formation of a cylindrical core.

Acceleration

\mathcal{S} is proportional to the Poynting flux.

Defining the constant of motion

$$\sigma_m = \frac{A\Omega^2}{\Psi_A \mathcal{E} V_{\text{max}}} = \frac{A\Omega^2 (1 + \mathcal{E}/c^2)}{\Psi_A \mathcal{E}^{3/2} \sqrt{2 + \mathcal{E}/c^2}}$$

we find (by combining the integral relations)

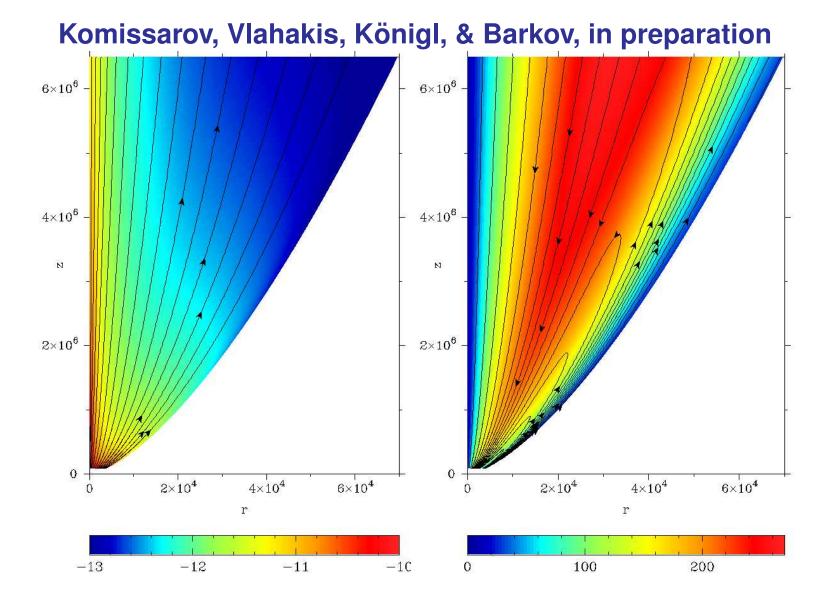
$$\frac{\text{Poynting}}{\text{total energy flux}} = \sigma_m \left(1 - \frac{V_{\phi}}{\varpi \Omega} \right) \frac{V_{\text{max}}}{V_p} \frac{B_p \varpi^2}{A} \propto \frac{B_p \varpi^2}{A}$$

So, $S \downarrow$ means bulk acceleration.

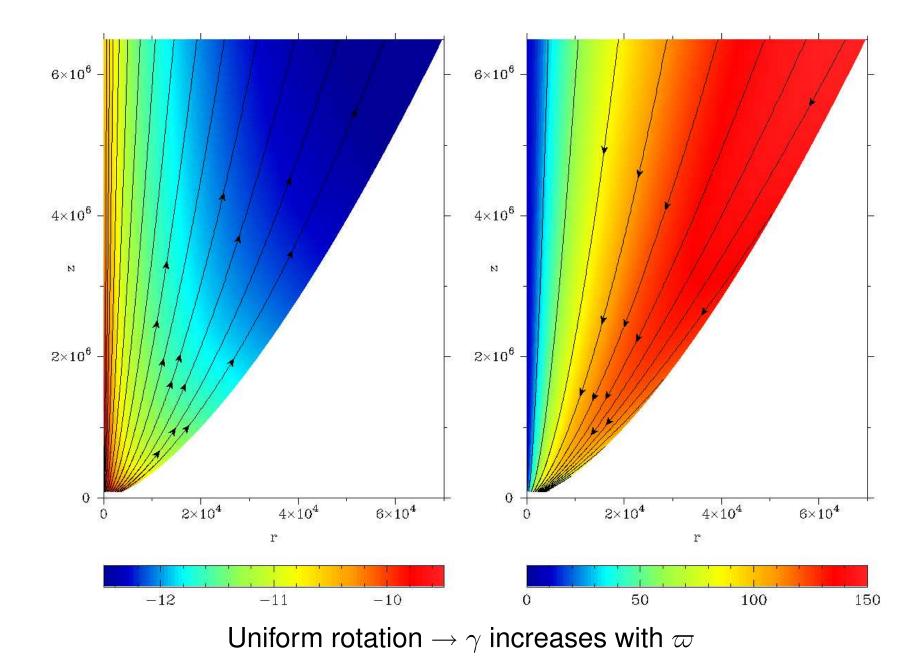
E.g., a transition from $S \sim 1$ to $S \sim 0.5$ means that half of the energy flux (initially in the electromagnetic field) is transferred to kinetic energy flux.

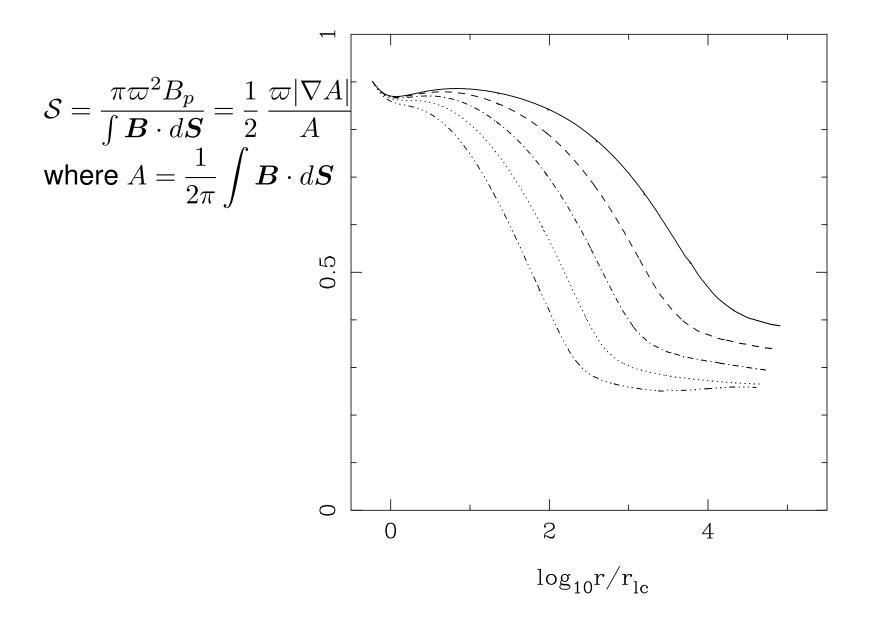
Acceleration mechanisms

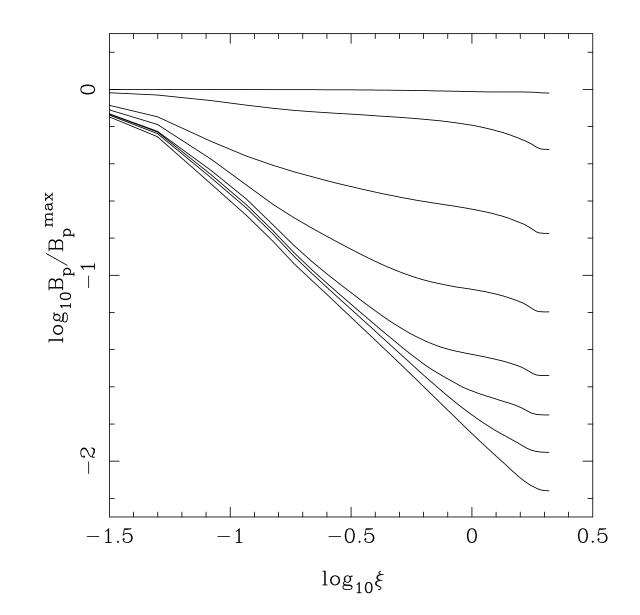
- thermal (due to ∇P) \rightarrow velocities up to C_s
- magnetocentrifugal (beads on wire)
 - initial half-opening angle $\vartheta > 30^{\circ}$ (only for cold flows)
 - velocities up to $\lesssim \varpi_i \Omega$
- relativistic thermal (thermal fireball works for relativistic temperatures) gives $\gamma \sim \xi_i$, where $\xi = \frac{\text{enthalpy}}{\text{mass} \times c^2}$
- magnetic due to $J \times B/c \propto \nabla(\varpi B_{\phi})$ connected to S it can give $\mathcal{E}_{\text{kinetic}}$ up to the total \mathcal{E}



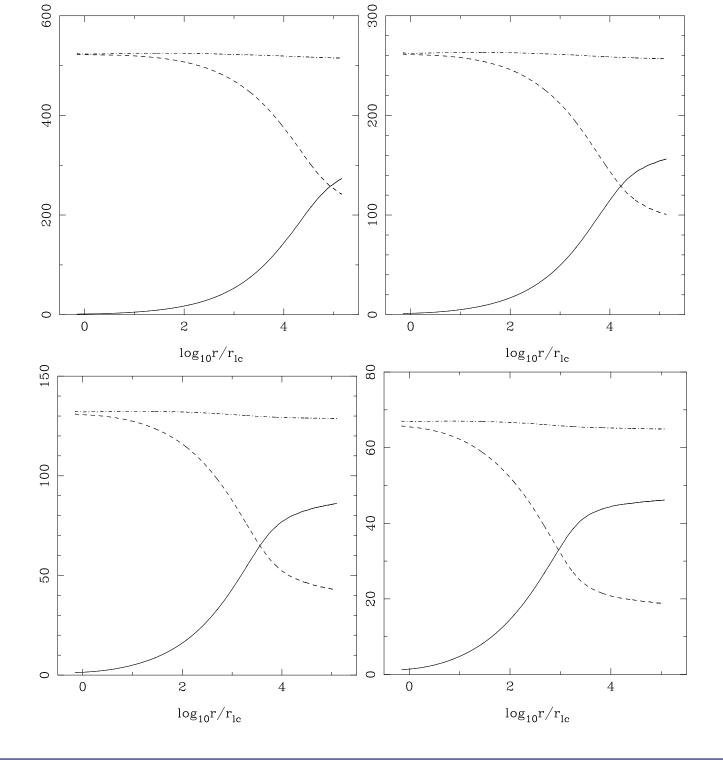
left: density/field lines, right: Lorentz factor/current lines (wall shape $z \propto \varpi^{1.5}$) Differential rotation \rightarrow slow envelope

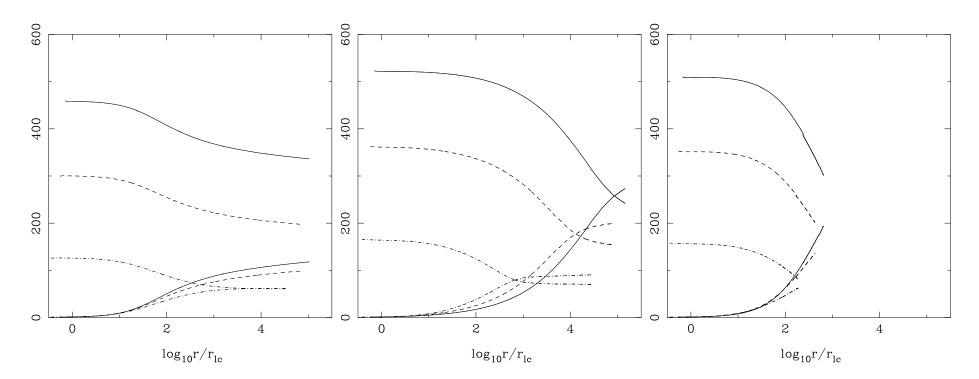






Distribution of the poloidal magnetic field lines across the jet





 γ and $\gamma\sigma$ for wall-shapes: $z \propto \varpi$ (left), $z \propto \varpi^{1.5}$ (middle), $z \propto \varpi^2$ (right)

In the conical $\gamma \sim \varpi \Omega/c$, but small efficiency

In parabolic, Lorentz factor $\gamma \sim z/\varpi \propto \varpi^{1/2} \propto R^{1/3}$ (middle) and $\gamma \sim z/\varpi \propto \varpi \propto R^{1/2}$ (right) efficiency $\sim 50\%$

Summary

 \star magnetic fields provide a viable explanation of the dynamics of jets

[they extract energy and angular momentum (transfer them to matter) – they collimate outflows and produce jets – in AGN jets they could explain relatively large-scale acceleration and polarization/RM maps]

- \star the paradigm of MHD jets works in a similar way in all astrophysical jets more than half of the Poynting flux is trasfered to kinetic energy flux
 - if $\mathcal{E}/Mc^2 \gg 1 \rightarrow \text{relativistic flow with } \gamma_{\infty} \sim 0.5 \frac{\mathcal{E}}{Mc^2}$ if $\mathcal{E}/Mc^2 \ll 1 \rightarrow \text{nonrelativistic flow with } V_{\infty} \sim \sqrt{\frac{\mathcal{E}}{M}}$

• collimation goes along with the decrease of the Poynting flux