The Kelvin Helmholtz Instability (KHI)

The KHI occurs in fluids whenever there is a gradient/jump of velocity

The KHI well known since ~ 150 years

Its connection with astrophysics dates back only to middle `70^s (Radio Galaxies)

In these last decades *KHI* attracted a lot of interest in different astronomical scenarios **Linear Analysis of the KHI**

Equilibrium: a jet of radius *a* moving in the *z* direction Perturbed with disturbances sinusoidal with *t* and along *z* and ϕ directions:

 $f(r) \exp [i(kz + n\phi - \omega t)]$ (normal modes)

k: Longitudinal wavenumber

n: Azimuthal wavenumber

 $f(r): J_n(r), H^o_n(r)$

WHICH KIND OF ANALYSIS ?

Temporal: k real, ω complex: $t_i = 2\pi / \text{Im}(\omega)$ *Spatial*: ω real, k complex: $l_i = 2\pi / \text{Im}(k)$

Temporal \leftrightarrow *Spatial*: $l_i = t_i / v_g$, $v_g = d \operatorname{Re}(\omega) / d k$

→ Dispersion relation: $\mathcal{D}(\Phi; M, ka, v, ...) = 0$

Nondimensional variables

$$\Phi = \omega / ks, \quad M = v / s, v = \rho_{jet} / \rho_{ext}$$

Linear KHI for adiabatic and HD jet

Two kinds of unstable perturbations

1 - Ordinary (surface) modes ('Historical' KHI):

- Oscillations of the interface
- Stabile only for $ka \rightarrow \infty$ and $M \ge 2.8$

2 - Reflected (body) modes:

- Acoustic perturb. propagating inside and outside the jet
- Are found for M > 2 (depending on ka)
- Their onset related to the *over-reflection* of *sound waves* at the jet boundary

Different evolution expected for ordinary and reflected modes

Ordinary

Steady vortex (cat's eye)

Reflected

Acoustic waves moving away from the trans. layer waves \rightarrow shocks

Non linear Analysis of the KHI

→ Equilibrium: *A jet moving through the environment*→ At *t* = 0 unstable modes are switched on:

Temporal: A spectrum of *ka* assumed all along the flow*Section of an infinite jet* (*period. b.c.*)Long temporal evolutions

Spatial: With a spectrum of Φ you perturb one side of the jet
 Free b.c. on the other side
 Evolution of structures
 advected along the flow

2 - D / cyl.

M = 20v = 0.3 v = 3

M = 10v = 0.1 v = 10

Evolution of a 3-D supersonic jet

M = 10

v = **0.1**

<u>2-D</u> vs <u>3-D</u> M = 10

v = 0.1

5

10

15

20

0.2 0.0

0

v = 0.1

v = 10

<u>3-D vs 2-D</u> M = 10, v = 0.1

2-D/s 3-D

Similar asympt. configurations but *3-D jets evolve much faster than 2-D jets*

Shocks are *weaker* and the post shock material is *cooler*

Mixing and momentum deposition are enhanced

Large scale configur.: The *helical mode* prevails at the beginning

but

Rapid development of *small scale structures*:

- i) *unstable n > 1* modes (first)
- ii) *cascade* to small scales eddies via *non linear turbulent processes* (later)

KHI vs Astrophysical Jets

Do jet survive against the KHI ????

More '*astrophysical*' ingredients must be considered:

- Radiative losses

- Magnetic field **B**

(- Relativistic regime)

Radiative Losses: KHI and thermal instabilities

Relevant if
$$\tau = t_{cool} / t_{dyn} \le 1$$
, $t_{cool} \approx P/L$
 $\mathcal{L} = n^2 \Lambda (T)$

We can express $\Lambda(T) \propto T^{\alpha}$ where the value of α depends on T

For an *optically thin plasma*

 $\alpha = 6.5$ $T \le 15.000 K$ $\alpha = -1.5$ $15.000 K \le T \le 25.000 K$

M = 10, ka = 5

Ordinary modes slightly affected *Reflected modes* tend to be stabilized Possible onset of the *classical thermal instab*.

Different values of α ?

Non linear evolution: Which $\Lambda(T)$?

Simulations of 3-D radiative jet:

Parameters: M = 10, $T_o = 10.000$ K, $n_o = 100$ cm⁻³

Radiation *delays* the effect of *KHI*, mainly in *dense jets*

Lower temperature in the post-shock region

- → Smaller entrainment and momentum deposition
- Disruption of jet delayed
- → *No thermal instability*

Evolution of the jet radius

v = 10

Radiative

6

v = *0.1*

Radiative

8

t

Interaction with the environment

- The momentum is transferred to the environm. whithin $t \sim 20$
- The jet radius increases linearly

 $v_{exp} \sim 0.15 s$

$$d_{\perp} = v_{exp} t = 4.5 \times 10^{17} s_6 t_5 cm$$

Linear <u>*KHI* and magnetized jets</u>: *B* **V**

Unstable modes damped: *RM*: shifted to ka >> 1*OM*: unstable for $M_A < 0.5 - 1$

M=10, *n*=0

<u>Linear KHI and magnetized jets</u>: $B_{\phi} \neq 0 \rightarrow CDI$

$$M_f = 3$$
$$V_A / s = 1$$

$$M = M_A = 4.2$$

|*n*| = 1

- Splitting of modes with n = 1 and n = -1
- The *KHI* tends to be damped for $B_{\phi} \neq 0$
- This trend seems to be quite independent on the initial equilibrium
- The damping is stronger for $V_A/s >> 1$
- The onset of the *CDI* critically depends on the equilibrium
- Sometimes the *CDI* can prevail over the *KHI*

Nonlinear evolution of magnetized KHI

Spatial analysis of a transalfvenic, slowly expanding jet $M \sim 1 - 1.8$, $M_f \sim 0.6$, $M_A \sim 0.7 - 0.9$

Non linear evolution: $B_{\phi} = 0, 2-D$

 $M \sim M_f \sim 1, \ M_A = 7, \ V_A / s << 1$

The slab evolution strongly depends on:

 a / d_{tr}

 $I - a / d_{tr} >> 1$ $II - a / d_{tr} \sim 1$

Non linear evolution: 3 - D

 $M = 1.3, M_f = 1.24, M_A = 0.6, V_A / s \sim 0.5, B_z = cst$

 $B_{\phi} = 0$

Non linear evolution 3-D (ctd)

3-D jet with *longitudinal magnetic* field *evolves more rapidly*

A *toroidal magnetic field* may have a *stabilizing effect* on the development of turbulence

Apparently this is due to the onset of the *CDI* that *increasees* B_{ϕ} on the boundary

hoop stress counteracts the KHI

Do supersonic jets survive against **KHI** ?

 $t_{cr} = 350 a_{16} s_6^{-1}$ yrs

Radiation + magnetic fields ~ **Yes**

KHI plays a main role in the interaction between the jet and the environment:

Momentum, energy deposition Entrainment, Mixing Shocks, heating of the gas (periodic knots ?)

What next ? 3-D supersonic jets (body modes)
+ helical fields (equilibrium B)
+ radiative losses (cooling function)

3-D Shock evolution

Transition layer, resistivity

Warnings: 2 - D vs 3 - D simulations

Temporal vs *spatial* simulations

Non linear spatial evolution: $B_{\phi} = 0, 2-D$

M = 1, $M_f = 0.99$, $V_A / s = 0.14$

References:

Hardee et al. (Al., Usa) Appl, Baty, Keppens et al. (Heidelberg, Strasbourg, Leuven) Bodo, Massaglia et al. (Torino)

Thank You

very much !

