A rotating molecular jet in Orion: Magneto-centrifugal wind acceleration in action?

L. A. Zapata, <u>J. Schmid-Burgk</u>, D. Muders, P. Schilke, K. Menten Max-Planck-Institute for Radioastronomy

Declination (J2000)

CO(2-1)

Red(17-19 km s)

8.2-9.2 km/s

Summary

The outflow Ori-S6 presents red-blue asymmetries about its axis which on three levels suggest rotation:

- 1. Clumps (SO 6_5-5_4 ; diameter ~ 10³ AU) close to the source: End-over-end velocity difference ~8 km/s
- Inner jet shell (CO 2-1; diameter across several 10³ AU) at some 1-2 x 10⁴ AU from the source: Velocity difference some 2 km/s
- CO tube (¹³CO 2-1, C¹⁸O 2-1; diameter ~10⁴ AU) out to ~4-5 x 10⁴ AU from the source:

Velocity difference on the order 1 km/s

Very crude estimates suggest B to be of the order 1mG in 1 and 100 μ G in 3, and the total angular momentum contained in 3 to be a few 10⁵⁴ gr cm² s⁻¹