A rotating molecular jet in Orion: Magneto-centrifugal wind acceleration in action?

L. A. Zapata, J. Schmid-Burgk, D. Muders, P. Schilke, K. Menten Max-Planck-Institute for Radioastronomy

Right Ascension (J2000)

$\mathrm{CO}(2-1)$

Welocity: 13.00 km/s
OMC-1

Blue ($15-17 \mathrm{~km}$ s)
$\operatorname{Red}(17-19 \mathrm{~km} \mathrm{~s})$

$7.0-8.2 \mathrm{~km} / \mathrm{s}$

$8.2-9.2 \mathrm{~km} / \mathrm{s}$

$6.3-7.3 \mathrm{~km} / \mathrm{s}$

Summary

The outflow Ori-S6 presents red-blue asymmetries about its axis which on three levels suggest rotation:

1. Clumps ($\mathrm{SO}_{5}-5_{4}$; diameter $\sim 10^{3} \mathrm{AU}$) close to the source:

End-over-end velocity difference $\sim 8 \mathrm{~km} / \mathrm{s}$
2. Inner jet shell (CO 2-1; diameter across several $10^{3} \mathrm{AU}$) at some 1-2 $\times 10^{4} \mathrm{AU}$ from the source:

Velocity difference some $2 \mathrm{~km} / \mathrm{s}$
3. CO tube (${ }^{13} \mathrm{CO} 2-1, \mathrm{C}^{18} \mathrm{O} 2-1$; diameter $\left.\sim 10^{4} \mathrm{AU}\right)$ out to $\sim 4-5 \times 10^{4} \mathrm{AU}$ from the source:

Velocity difference on the order $1 \mathrm{~km} / \mathrm{s}$
Very crude estimates suggest B to be of the order 1 mG in 1 and $100 \mu \mathrm{G}$ in 3, and the total angular momentum contained in 3 to be a few $10^{54} \mathrm{gr} \mathrm{cm}^{2} \mathrm{~s}^{-1}$

