

ESO PR Photo 40c/99 / 17 November 1999

3D Schematic View

Source

- Disk
- Central Black Hole / New Star
- Connection disk-BH/star = X-wind

Formation/ Acceleration

- Thermal
- Magnetic

Collimation

- Pressure
- Magnetic

Propagation :

- shocks
- reacceleration
- radiation

Evolution of jets from YSOs

YSO Jets class 1 YSO Jets class 0 $\epsilon > 0?$ >> 0 ?Disk driven Jet – No star ? Disk Driven Jet * 2 Star Disk **Free fall** T Tauri YSO Jet class 2 **Stellar** Winds $\epsilon \sim 0$ $\epsilon = -50$ Star/Disk Boundary driven Jet

- From disk-driven to star-driven
- Decreasing efficiency of the magnetic rotator

Low mass accreting TTauri stars

- Observational constraints from RY Tau, lk C15, DE Tau, GK Tau, DR Tau, IP Tau
 - Ω star
 - Density before the shock
 - Asymptotic speed
 - Transition under/over pressured $\sim 50 \text{ AU}$

Meliani, 2001, DEA

Low mass accreting jets from TTauris

- Mass Loss Rate :
 - $10^{-10} M_{\rm j}/yr$ Stellar Wind
 - 10-9 $M_{j}/yr\,$ within 3 R_{*} of the disk
 - Disk subkeplerian close to *
 - Flat Vphi
 - Consistent Stellar-X-wind model
- Consistent Temperature ?
 - $10^5 10^3 \text{ K}$
 - Effective polar T,
 - cf. Solar wind
 - -> synthetic map gives 10^{4} K

Angular Momentum

- Larger magnetic lever arm
- Small M_{∞} and

- Angular momentum removal: $\frac{L}{L} = 1.07 \times C = 1 \times 101$
 - $-\tau = \frac{L}{j}$ 10⁷ yr for class III
- Improving solutions ?
 - See Solar wind

- Increase $\langle \lambda \rangle$ lever arm - >reduces to 10⁶ yr or less
- Increases « β » P gradient
 -> Higher Temperature

Simulations Stellar+Disk + turbulent viscous heating Meliani, Casse, Sauty, 2006

Increasing Wind mass loss = opens

o.87 cous heating Sauty, 2006

Increasing Wind mass loss = opens

Extragalactic Winds and Jets

	Type 2 (Narrow Line)	Type 1 (Broad Line)	Type 0 (Unusual)	1
Radio Quiet				
	Seyfert 2 Narrow Emission Line Galaxies IR Quasars ?	Seyfert 1 Quiet Quasars (QSO)	Broad Absorption Line QSO ?	
Radio Loud	Narrow Line Radio Galaxies	Broad Line Radio Galaxies	Blazars	BH spin Environnemer
			C	Efficiency of the magnetic rotat
	Fanaroff-Riley I Rich Environment Small torus opening angle	?	BL Lac Objects	
		C /	C	
	Fanaroff-Riley II Poor environment Large torus opening angle	Steep Spectrum Radio Quasars $\stackrel{?}{\rightarrow}$ Flat Spectrum Radio Quasars	(FSRQ)	¥

Decreasing line of sight inclinaison angle

AGN Classification

Criterion for cylindrical collimation

 $\nabla f = f(\text{non polar line}) - f(\text{polar axis})$

 $\varepsilon' \approx \nabla E$

ε'>0 → Collimation
ε'<0 → No Collimation

Criterion for cylindrical collimation

Efficiency of Pressure Confinement

$$\kappa \propto \nabla P$$

- κ>0 Under-pressured jet
- $\kappa < 0$ Over-Pressured jet

Efficiency of Magnetic Confinement

$$\frac{\varepsilon}{2\lambda^2} = \frac{E_{\text{Poynting},0} + E_{\text{Rot},0} - \left|\Delta E_{\text{Grav}}^*\right|}{L\Omega}$$

•
$$E_{\text{Poynting}} = L\Omega - E_{\text{Rot}} \approx E_{\text{MR}}$$

- ε>0 EMR
- ε<0 IMR

Extension to Kerr metrics

Efficiency of Magnetic Confinement

$$\frac{\varepsilon}{2\lambda^2} = \frac{E_{\text{Poynting},0} + E_{\text{Rot},0} - \left|\Delta E_{\text{Grav}}^*\right|}{L\Omega}$$

$$E_{\mathrm{Poynting}} pprox E_{\mathrm{MR}}$$

-Support lepton jets -Efficiency of a rotating black hole in collimating

Extension to Kerr metrics

Efficiency of Magnetic Confinement

$$\frac{\varepsilon}{2\lambda^2} = \frac{E_{\text{Poynting},0} + h_0^2 E_{\text{Rot},0} - \left|\Delta E_{\text{Grav}}^*\right|}{h_0^2 L\Omega}$$

$$E_{\mathrm{Poynting}} pprox E_{\mathrm{MR}}$$

-Support lepton jets -Efficiency of a rotating black hole in collimating

Extension to Kerr metrics

Efficiency of Magnetic Confinement

$$\frac{\varepsilon}{2\lambda(\lambda+\overline{\omega_*})} = \frac{E_{\text{Poynting},0} - \left|\Delta E_{\text{Grav}}^*\right| + h_0^2 E_{\text{Rot},0} + L(\omega_0 - \omega_*)}{h_0^2 L\Omega}$$

$$E_{\mathrm{Poynting}} pprox E_{\mathrm{MR}}$$

-Support lepton jets -Efficiency of a rotating black hole in collimating

Conclusions

Stellar jets to spin down the star ? Or the inner disk itself?

Magnetic versus thermal acceleration Proton vs positron

Black Hole Spin down <--> Stellar spin down

Rotating black hole magnetic efficiency

Stellar vs disk

Disk driven Jets for Class 0: Crucial Role of Boundary Conditions

Contopoulos & Sauty, 2001, A&A

Alternative, cf. Henriksen et al.