Radiative jets from variable

sources

A. Raga, J. Canto, F. de Colle, <u>P. Kajdic, A. Esquivel, P.</u> <u>Velazquez, A. Rodriguez</u>

(the "chilango boys")

E. de Gouveia Dal Pino, A. Cerqueira (→Ipanema) S. Cabrit, T. Downes (\rightarrow coiffeur) M. Smith, A. Rosen (\rightarrow ?????) T. Gardiner, A. Frank (\rightarrow enstein) A. Ferrari +++ (\rightarrow mafia di Torino)

a. Characteristics of the variable ejection

- \rightarrow Pulsed: 54
- \rightarrow Precessing: 21
- \rightarrow Orbiting: 21

Masciadri & Raga 2002

b. Technique

- \rightarrow analytic: 13
- \rightarrow 1D sims: 6
- \rightarrow slab sims: 5
- \rightarrow axisymmetric sims: 21
- \rightarrow 3D sims: 37
- → MHD: 10

Raga & Kofman 1992

c. predictions

- \rightarrow halpha: 23
- \rightarrow other lines: 25
- \rightarrow intensity maps: 25
- \rightarrow line profiles: 4
- \rightarrow pos-vel diagrams: 10
- \rightarrow velocity channel maps: 5

-47.5	23.23 25.05	-17.5	23.26 26.43
-42.5	23.46 25.94	-12.5	23.38 26.61
-37.5+ • •	23.36 26.11	-7.5	23.50 26.83
-32.5. 2005-	23,27 26,07	-2.5	23.84 27.42
-27.5	23.22 26.06	2.5	23.53 27.15
-22.5	23.25 26.22	7.5 <i>r</i>	21.20 22.69
10	10	00 01	
18	19	20 21	
log L(CO) erg/s			

Rosen & Smith 2004

d. Specific objects

 \rightarrow total: 12

- → HH 34: 4
- → HH 111: 2
- → HH 32: 1
- → HH 30: 1
- → HH 110: 1
- \rightarrow DG Tau: 2
- → HH 505: 1
- → HH 555: 1

e. special dynamical or microphysical situations

- \rightarrow collision with dense cloud(s): 4
- \rightarrow stratified environment: 3
- \rightarrow molecular jet/environment: 14
- \rightarrow photoionised jets: 6
- \rightarrow giant jets: 3
- \rightarrow jet in sidewind: 3

jet in sidewind:

Masciadri & Raga 2001

Ciardi et al. 2008

externally photoionized jet

conference poster

Raga & Reipurth 2004

This talk: 2 and 3D simulations illustrating

\rightarrow 2 vs. 3D

 \rightarrow Non-top hat initial velocity cross section

 \rightarrow Initial opening angle of jet

→Ejection velocity variability

→ Precession

All simulations have a single species network (HI/II), and a parametrized cooling function

2D vs. 3D: head of a top-hat jet

2D vs. 3D: the head of a non-top hat jet

t = 150 yr

 \rightarrow the same as previous model but with a quadratic

injection velocity profile with $v_c/v_e = 2$

The effect of a non-zero initial opening angle

- \rightarrow size of domain along axis: 4 $\times\,10^{17}$ cm
- \rightarrow jet radius: $r_j = 7 \times 10^{15}$ cm
- \rightarrow jet radius resolved with 9 or 18 grid points
- → $v_j = 200 \text{ km s}^{-1}$, $n_j = 1000 \text{ cm}^{-3}$, $T_j = 1000 \text{ K}$ → $n_{env} = 200 \text{ cm}^{-3}$, $T_{env} = 100 \text{ K}$

 \rightarrow 3D simulation with a sinusoidal density perturba-

tion with wavelength of $r_j/2$ and half-amplitude of 5 %

 \rightarrow half-opening angle $\alpha = 0, 5^{\circ}$

The effect of a non-zero initial opening angle

Models with an ejection velocity variability

Top-hat jet with ejection velocity variability: the movie

 \rightarrow 6-level, binary adaptive grid

 $(2D: 1024 \times 256)$

 \rightarrow size of domain along axis: 4 $\times\,10^{17}$ cm

 \rightarrow jet radius: $r_j = 7 \times 10^{15}$ cm

 \rightarrow jet radius resolved with 18 grid points

 $\rightarrow v_j = 200 \text{ km s}^{-1}, n_j = 1000 \text{ cm}^{-3}, T_j = 1000 \text{ K}$

 \rightarrow $n_{env}=100~{\rm cm^{-3}},~T_{env}=100~{\rm K}$

 \rightarrow two sinusoidal modes:

$$\Delta v = 30 \ {\rm km \ s^{-1}}, \ \tau = 30 \ {\rm yr}$$

 $\Delta v = 100 \ {\rm km \ s^{-1}}, \ \tau = 500 \ {\rm yr}$

Non-sinusoidal modes

 $f(t) = 1 + \cos(2\pi t/\tau)$ $f_{c}(t) = f(t) - 1$ $f_{l}(t) = 0.142 f(t) e^{-10t/\tau} - 1$ $f_{r}(t) = 0.142 f(t) e^{10t/\tau} - 1$

skewed left

- \rightarrow size of domain along axis: 4 $\times\,10^{17}$ cm
- \rightarrow jet radius: $r_j = 7 \times 10^{15}$ cm
- \rightarrow jet radius resolved with 18 grid points

$$\rightarrow v_j = 200 \text{ km s}^{-1}, n_j = 1000 \text{ cm}^{-3}, T_j = 1000 \text{ K}$$

$$\rightarrow$$
 $n_{env}=100~{\rm cm^{-3}},~T_{env}=100~{\rm K}$

 \rightarrow single-mode variability with $\Delta v = 50$ km s⁻¹ and

$$\tau = 100 \ \mathrm{yr}$$

Ejection velocity variability + precession

3D: $1024 \times 512 \times 512$

 \rightarrow size of domain along axis: 4×10^{17} cm

 \rightarrow jet radius: $r_j = 7 \times 10^{15}$ cm

 \rightarrow jet radius resolved with 18 grid points

 $\rightarrow v_j = 200 \text{ km s}^{-1}, n_j = 1000 \text{ cm}^{-3}, T_j = 1000 \text{ K}$ $\rightarrow n_{env} = 100 \text{ cm}^{-3}, T_{env} = 100 \text{ K}$

 \rightarrow two sinusoidal modes:

 $\Delta v = 20 \ {
m km \ s^{-1}}, \ au = 30 \ {
m yr}$ $\Delta v = 100 \ {
m km \ s^{-1}}, \ au = 230 \ {
m yr}$

 \rightarrow precession: $\tau_{prec} = 1000$ yr, half-angle: 5°

t=50 yr

Summary:

 \rightarrow Models of jets with variable ejections have been explored in unprecedented detail

 \rightarrow The structures of some HH objects can be reproduced very well with variable jet models

 \rightarrow The jet structure depends on:

 \rightarrow the amplitudes and periods

 \rightarrow the initial cross section

 \rightarrow The precise functional form of the variability appears to be less important

 \rightarrow Precession (and/or orbital motion) can play an important role