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Scientific rationale

I Molecular jets? From colder MHD jets from inner areas of

disk OR is it gas from infalling envelope?
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The model

Aim: introduce molecular chemistry in disk winds

and see whether molecules survive and/or be formed

I Dynamical variables - flow lines of a self-similar MHD disk

wind [Casse and Ferreira, 2000]

I magnetically driven centrifugal disk wind

I consistency with underlying accretion disk

I Atomic disk wind model [Garcia et al., 2001]

I ion-neutral momentum exchange rates

I calculation of ion-neutral drift speed from ~J ×~B

I 1D steady state MHD shock model for molecular ISM

[Flower and Pineau des Forêts, 2003]

I thermochemical ionization structure along flow line
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Radiation field - Class I star

dust composition and grain

size distribution constant

[Mathis et al., 1977]

radiation field coming from

star (4 000 K) + hot spots

(10 000 K); here UV flux

normalized by mean

interstellar background

[Draine, 1978], attenuated

by dust
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Dust grains

separate calculation of the

momentum transfer rate

coefficients for gas ions,

charged grains, and

charged PAHs to the neutrals

dust temperature from

radiation equilibrium
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Heating/cooling sources - Ionization contributors
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H2 dissociation

I quite well self-shielded

I close to the star:

X-rays destruction balances H2

formation on grains

I along the flow line

I collisional dissociation too

slow

I chemical dissociation by

charged hydrocarbons

C
+ + H2 → CH

+ + H

CH
+ + H2 → CH

+
2 + H

CH
+
2 + H2 → CH

+
3 + H

I endothermic neutral-neutral

reactions:

OH + H2 → H2O + H
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CO survival

I CO self- and cross-shielding

not that good

I close to the star:

formation/destruction

HCO
+ + e

− → CO + H

H
+
3 + CO → HCO

+ + H2

I along the flow line:

photodissociation

I by end partly reforms from first

reaction
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H2O formation

I beyond 1 AU

H3O+ + e− → H2O + H

dominates

I H2O photodissociation

balances

OH + H2 → H2O + H
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Conclusions - Future work

I Molecules can survive in MHD disk winds
I low temperature plateau ' 2, 000 K

I outer flow lines (e.g. for Ṁacc = 10−6M�/yr and

warm solution, 60% of H is molecular for r0 = 1 AU)

I higher accretion rates

I study dust depletion at starting point - depends on

launching point, Ṁacc ... if inside of sublimation radius

I Prepare full sets of observational predictions
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+

Class 0, class I, class II
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H2O and H
+

H+ formation

1. forms by X-rays, destructed by PAH−

2. forms by X-rays, destructed by H2O

3. forms by charge exchange of H and

H
+
2 , photodissociation of CH+

4. forms or dissociates by

H+ + H2O = H2O+ + H
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