

MODELING THE 2006 NOVA OUTBURST OF RS OPHIUCHI: COLLIMATED OUTFLOWS AND JET-LIKE EJECTIONS

S. Orlando¹, J.J. Drake², J.M. Laming³

¹ INAF - Osservatorio Astronomico di Palermo, Italy

- ² Harvard-Smithsonian Center for Astrophysics, USA
- ³ Space Science Div., Naval Research Laboratory, USA

Protostellar Jets in Context - S. Orlando

Rhodes, Greece – July 2008

- Scientific background
- The Chandra/HETG observations of the 2006 nova outburst
- Results and comparison with the observations
- Summary and conclusions

The symbiotic star RS Ophiuchi

Symbiotic recurrent nova

- Latest outburst: February 2006 (Narumi et al. 2006)
- Previous outbursts: 1898, 1933, 1958, 1967, 1985 (Rosino 1987)

Binary system, comprising

- a red giant star that does not fill its Roche lobe
- a white dwarf of mass near the Chandrasekhar limit

Are recurrent novae progenitors of SNe Ia?

See Sokoloski's talk

Protostellar Jets in Context – S. Orlando

Rhodes, Greece – July 2008

Rhodes, Greece – July 2008

HST ACS/HRC

(Bode et al. 2007)

The 2006 Nova Outburst

- During the 2006 outburst an intensive international observing campaign was organized since early phases of evolution
- Observations range from radio to X-ray wavelengths \odot

X-ray Band

- Hot gas \odot
 - ~ 10 keV few days after eruption
 - ~ 4 keV 19 days after optical maximum
- Shock-heated outer atmosphere of the red giant \odot

Sokoloski et al. 2006 (nature); Bode et al. 2006; Ness et al. 2007; Nelson et al. 2008; Drake et al. 2008

The Chandra/HETG Observations

Observations at day 13.9 (Drake et al. 2008)

- Rich spectrum of emission lines
 - Emitting plasma with 3 MK < T < 60 MK
- Lines too strongly peaked to be explained by a spherically symmetric shock
 - Collimation mechanism of X-ray emitting plasma perpendicularly to LoS
- Lines asymmetric and slightly blue-shifted

Open Questions:

- 1) Where does the X-ray emission originate during the early phase of evolution?
- 2) How does the collimation mechanism of X-ray emitting plasma work?
- 3) Which is the mechanism responsible of line asymmetries and blue-shift?

The Model

AIMS

Investigate the origin of X-ray emission and of observed asymmetries and broadening of emission lines

- Thermal conduction (+ heat flux saturation)
- Radiative cooling

$$rac{\partial
ho}{\partial t} +
abla \cdot
ho {f v} = {f 0} \ , \qquad \qquad rac{\partial
ho {f v}}{\partial t} +
abla \cdot
ho {f v} {f v} +
abla P = {f 0}$$

$$rac{\partial
ho E}{\partial t} +
abla \cdot (
ho E + P) \mathbf{v} = -
abla \cdot q - n_e n_H \Lambda(T)$$

$$E=\epsilon+rac{1}{2}|\mathbf{v}|^2\;,\quad P=(\gamma-1)
ho\epsilon\;,\quad q=\left(rac{1}{q_{ ext{spi}}}+rac{1}{q_{ ext{spi}}}
ight)^{-1}\;,$$

$$q_{
m spi} = - \pmb{\delta}_{
m T} \epsilon 20 \left(rac{2}{\pi}
ight)^{3/2} rac{(k_{
m b}T)^{5/2}k_{
m b}}{m_{
m e}^{1/2}e^4 Z \ln(\Lambda)} \
abla T$$

Protostellar Jets in Context – S. Orlando

Equatorial shock density enhancement (EDE) shock white dwarf red giant

Orlando et al. 2008

Rhodes, Greece – July 2008

 $q_{
m sat} = -{
m sign}\left(
abla T
ight) \; 5\phi
ho c_s^3$

FLASH code

Hydrodynamic Evolution

Radiative shock propagating through an inhomogeneous medium:

- Fast expansion of the shock with T ~ 10-80 MK
- development of dense and cold regions dominated by radiative cooling

Explored models with or without EDE	RS Ophiuchi	Log Mass Density [gm cm ⁻³] YD-E44-N7-L2
In models with EDE:Aspherical shock morphology	$A_{x} = 0^{\circ} 0^{\circ}$ $A_{z} = 0^{\circ} 0^{\circ}$	
 EDE determines the shock collimation perpend. to the plain of the orbit 		-13 -14
 Bipolar shock morphology distorted (by the off-set red giant wind) and converging on the side away from the red giant 	S. Orlando INAF - Osservatorio Astrono J. J. Drake Harvard-Smithsonian Cente J. M. Laming SSD - Naval Research Labo	-15 -16 -17 -18 omico di Palermo, Italy or for Astrophysics, Cambridge, USA -19 oratory, Washington, USA -20

Protostellar Jets in Context - S. Orlando

Protostellar Jets in Context - S. Orlando

Emission Measure vs. Temperature

Models without EDE:

- EM(T) characterized by a bump at T between 1 and 5 MK
- Even with E = 10⁴⁴ erg and red giant wind with largest density, the model fails in reproducing the observed EM(T)

Models with EDE:

- EM(T) characterized by a bump at T ~ 10 MK
- EM of the bump depends on the initial energy of the outburst
- Observed EM(T) distribution well reproduced with E = 10^{44} erg and $M_{ej} = 10^{-6} M_{sun}$

ND-E43-N10

ND-E43-N8

EM [10^{44.5} cm⁻³]

10¹³

10¹²

X-ray Emission

Synthesis of X-ray emission in the [0.6, 12.4] keV band

- Thermal broadening of emission lines
- Doppler shift of lines due to velocity along the LoS
- Absorption due to shocked CSM and ejecta

Plane of the orbit inclined by 35° to the LoS

Best-fit model with EDE:

- Most of the X-ray emission originates from an irregular jet-like structure with a size of ~10 AU
- The X-ray source is due to interaction between the blast wave and the EDE and propagates perpendicularly to the LoS

Line Profile Analysis

Best-fit model with EDE:

- The synthetic line profiles are more peaked than expected for a spherically symmetric shock
- Line profiles asymmetric and slightly blue-shifted; Asymmetries due to X-ray absorption of red-shifted emission by ejecta material
- Shocked CSM and shocked ejecta contribute to observed X-ray emission

Summary

- Simulated nova remnant highly aspherical;
 - blast wave efficiently collimated by the inhomogeneous CSM
- The model reproduces the observed X-ray emission in a natural way if the CSM is characterized by an equatorial density enhancement
- Most of the early X-ray emission originates from a small region localized at the interaction front between the blast wave and the EDE
- The model predicts asymmetric and blue-shifted line profiles remarkably similar to those observed
 - Asymmetries due to substantial X-ray absorption of red-shifted emission by ejecta material

