Molecular cooling in Large Scale Simulations of Protostellar Jets

International Max Planck Research School for Astronomy and Cosmic Physics at the University of Heidelberg

Jamie O'Sullivan

Landessternwarte(ZAH)

Overview

Introduction

- Summary of the astrophysical scenario addressed
- Description of the model
- Earlier Jet simulations
 - Setup
 - Results
 - Limitations
- Current Work
 - 2D simulations
 - 1D Stationary shock
- Visualisation Approach & Status
- Conclusion

Section 1: Observations of molecular emission in jets

• HH212 – Lee et al. 2007

Section 1: Observations of molecular emission in jets

HH 47 Velusamy et al. 2007

Section 1: Overview of the astrophysical scenario modelled

- Jet-driven outflow model
- Modelling protostellar jets which radiate in the H_2 rovibrational lines, such as HH46/47
- Objective is to carry out simulations to the large scales (~40,000 AU) and to reproduce observed emissions
- Hydrodynamic, with PLUTO finite volume code
- Chemical network of 6 species (HI, HII, e⁻, H⁻, H2, H2II) to model the H₂ cooling, solved with BDF
- 15 reactions including the two main gas phase H₂ formation pathways
- Cooling functions for atomic hydrogen, and molecular cooling from H₂ (Galli & Palla 1998)

Earlier Jet Simulations: Setup

- Hydrodynamic, 2D cylindrical axisymmetry, 400x2000 on uniform grid
- Parameters:
 - Jet density $\eta = 5$ (overdense jet, 1e4 cm⁻³)
 - Beam sound speed 11km s⁻¹, injected at Mach 12
 - Beam ionisation 10% (value when injected)
 - T_{beam} 1e4 K, T_{ambient} 1e3 K
- Various configurations
 - Steady or Pulsed, with T ~ 80 years, velocity sinusoidally varying between M6 and M12
 - Overdense beam or equal density
 - H_2 abundance in the medium 20% 40%

Previous Results: State variables & ionisation

Previous Results: Species Fractions

Previous Results: Cooling Losses

Observations

- Results gave a lot of information, but some limitations were apparent
 - Parameters not entirely appropriate for the scenario of a cold molecular cloud
 - Chemistry and cooling terms not entirely appropriate for the appropriate parameters
 - MHD effects not yet included
- These three areas are now being addressed
 - Firstly, keep the same model but alter the parameters, pressure & H_2 fraction of medium, beam pressure & ionisation
 - Also, compare results of chemical and cooling model with a more detailed model in the physical parameter space of interest

Current and future simulations

- Carrying out simulations with same code now, using more realistic parameters in order to better represent the cold environment
- Parameters:
 - Jet density, again $\eta = 5$ (overdense jet, 1e4 cm⁻³)
 - Beam sound speed 8km s⁻¹, injected at Mach 12
 - Fully molecular ambient medium
 - 10% H2 in the beam
 - T_{beam} 1000 K, $T_{ambient}$ 150 K
- Some numerical difficulties at low temperatures
- Also working on getting AMR simulations running in order to reach larger scales with sufficient resolution

1D stationary J-Shock

- Flower et al. 2003 provides a useful model problem for comparison, also similar approach by Massaglia et al. 2005 for atomic network
- 1D stationary J shock into fully molecular medium at 25km s⁻¹
- "Testbed" post-shock solution code written using GSL
- Can also investigate effect of transverse B field

Stationary J-Shock Comparison

- Initial evolution "fine", but subsequent evolution is showing two main un-desired features:
 - Time-scale for H2 reformation far too slow
 - Ionisation reaches unrealistic levels
- Both probably have the same explanation:- temperature stays too high for too long -> cooling needs to be reviewed

Stationary J-Shock Comparison

- Cooling is too slow despite addition of OI fine structure cooling.
- Currently including H₂ dissociation cooling and H₂-H₂ excitation cooling

H₂ Emission lines

- Interested in 2.12µm line J1-0 S(1) & 1-0S(3) lines (typically quite strong in observations)
- Given H₂ concentration and temperature output from the model, assume statistical equilibrium (but not LTE) for a 3vibrational-level H₂ system
- Post-process calculation of level populations as in Suttner et al 1997
- Will be incorporated in the WP5 visualisation pipeline

Log H2 cooling loss (erg cm^-3 s^- Log H2 "cooling luminosity" (erg cm^-2 s^-

Conclusion

- Preliminary simulations being carried out with more realistic parameters
- Progress made on refining the model by means of the stationary shock scenario, introducing dust,
- Aiming for a more judicious choice of physical setup for simulations, as well as better estimate of numerical requirements (resolution of cooling/chemistry)
- Large scale simulations with PLUTO AMR on the way...
- Visualisation