

Two-component jet simulations: Combining analytical disk & stellar outflow solutions

T. Matsakos¹, S. Massaglia¹, E. Trussoni², K. Tsinganos³, N. Vlahakis³, A. Mignone¹,

¹ University of Turin, Italy ² INAF – Observatory of Turin, Italy ³ University of Athens, Greece

www.jetsets.org

Outline

- Motivation Aims
- 1-component model results
- Setting up 2-component jet scenarios
- 2-component model results
- Conclusions

Motivation - Aims

 <u>Observations</u> of CTTSs¹ suggest the presence of two genres of winds:

Stellar and Disk outflows

with different dominance depending on the YSO

• <u>Theoretical arguments</u>² propose:

Extended warm disk winds (explain mass loss rates and collimation) Pressure driven stellar outflows (probably spin down the star) Sporadic X-type winds (related with jet variability?)

¹ Edwards et al. (2006), Kwan et al. (2007) ² Ferreira, Dougados & Cabrit (2006), Bogovalov & Tsinganos (2001)

A qualitative picture

JET Simulations, Experiments and Theories

(* The magnetic field has a self-similar dependence)

Analytical solutions

JET Simulations, Experiments and Theories

Image from Ferreira, Dougados & Cabrit (2006)

?

<u>Analytical Disk</u> <u>Outflow</u>

ADO

<u>Analytical Stellar</u> <u>O</u>uflow

Our aim

- Take advantage of both analytical & numerical approaches of the jet phenomenon to study
 2-component jets:
- Unify the 1-component analytical jets numerically and study stability, potential steady states, interaction etc.
- Parametrize the two-component jet models and investigate a variety of scenarios
- Introduce radiation cooling and try to compare the results with observational data (future work)

1-component jet results

30 40

1-comp. numerical jets - ADO

JET Simulations, Experiments and Theories

1-comp. numerical jets - ASO

JET Simulations, Experiments and Theories

Setting up 2-component jet scenarios

2-comp. jet parameters

JET Simulations, Experiments and Theories

Normalization provides the ratios of the characteristic:

10.00

- lengths (L)
$$\lambda_L = \frac{\kappa_*}{\varpi_*}$$

- velocities (V)
$$\lambda_V = \frac{V_{S*}}{V_{D*}}$$

- magnetic fields (B) $\lambda_B = \frac{B_{S*}}{B_{D*}}$

Mixing provides:

- the location of the matching surface
- the steepness of the transition region

Physical arguments (protostellar mass) and observations constraints (launching region)
fix 2 out of the 5 parameters

The free parameters are

- the contribution of each component in the total magnetic field (or density)
- the footpoint of the matching fieldline
- the steepness of the transition
- Such numerical models allow the study of plethora of two-component jet scenarios depending on the evolutionary stage and intrinsic physical conditions

Mixing and time variability

JET Simulations, Experiments and Theories

• Mixing function:

$$U_{2comp} = w_D U_D + w_S U_S$$

$$w_S = \exp\left[-\left(\frac{A_{tr}}{qA_m}\right)^d\right]$$

$$w_D = 1 - w_S$$

Enforced time variability

$$f_S(r,t) = 1.0 + 0.5 \sin\left(\frac{2\pi t}{T_{var}}\right) \exp\left(-\frac{r^2}{r_m^2}\right)$$

 We solve the time-dependent MHD equation using PLUTO, (Mignone et al. 2007) a shock-capturing numerical code.

http://plutocode.to.astro.it

Name	λ_B	q	d
1-q01	1.0	0.1	2.0
2-q02	1.0	0.2	2.0
3-q05	1.0	0.5	2.0
4-q01	2.0	0.1	2.0
5-q02	2.0	0.2	2.0
6-q05	2.0	0.5	2.0
7-B05	0.5	0.2	2.0
8-B5	5.0	0.2	2.0
9-B10	10.0	0.2	2.0
10-d1	2.0	0.2	1.0
11-d4	2.0	0.2	4.0

Name	T_{var}/T_K	Quantity	Variable wind
1-SD1	1.0	ρ	Stellar
2-SD10	10.0	ρ	Stellar
3-SD100	100.0	ρ	Stellar
4-SV1	1.0	V_z	Stellar
5-SV10	10.0	V_z	Stellar
6-SV100	100.0	V_z	Stellar
7-X1	1.0	both	X-type
8-X10	10.0	both	X-type
9-X100	100.0	both	X-type

2-component jet results

Time evolution

JET Simulations, Experiments and Theories

Time evolution ($log(\rho)$ **) of a typical 2-component model** steady state – shock fomation – small deviations from analytical models

Steady state & shock formation

JET Simulations, Experiments and Theories

A shock is formed causally disconnecting the jet with its launching region

Parameter study

Numerical critical surfaces match pretty well & have an interesting shape 7-605

Dominance

19

Location of matching surface

Matsakos Titos, Protostellar Jets in Context, Rhodes, 2008

Enforced time variability

JET Simulations, Experiments and Theories

Matsakos Titos, Protostellar Jets in Context, Rhodes, 2008 20

An interesting resemblance

JET Simulations, Experiments and Theories

2-component jet model

4-SV100 -1.00 -1.0 200 100 -2.00 -1.7150 -2.3 80 -3.00 -3.0 60 -4.00 100 -3.7 40 -5.00 50 -4.3 20 -6.00 5.0 7.00 30 80 10 20 20 60 0 $\mathbf{40}$ r

Tzeferacos et al. (to be submitted)

- A steady state is always reached, proving that the intrinsically different ADO & ASO can well co-exist in a stable structure even when time variability is enforced
- A shock forms disconnecting the launching region with the outflow
- The final outcome of the simulations stays close to the initial setup, hence retaining the validity of the analytical studies for each solution
- Freedom of choice of the parameters can explain several different cases of observed jets

Thank you

Btw, next time I will be in the LOB rather than the LOC!

LOB: Lying On the Beach LOC: Lying On the Carpet (of the conference)

Ευχαριστώ πολύ Thank you Grazie