Protostellar Jet and Outflow in the Collapsing Cloud Core

<u>Masahiro Machida</u> (Kyoto Univ.) Shu-ichiro Inutsuka (Kyoto Univ.), Tomoaki Matsumoto (Hosei Univ.)

Protostellar Outflows and Jets

In star-forming regions, there are two distinct flows: Outflows and Jets

Molecular Outflow: low velocity (~10 km/s), wide opening angle

Optical Jet: high velocity (~100 km/s), well-collimated structure

Optical Jet is enclosed by Molecular Outflow

But, Mechanism is still unknown

Purpose of This Study

Understanding the driving mechanism of Jets / Outflows

We calculated the cloud evolution from the molecular cloud (n=10⁴ cm⁻³, r~10⁴ AU) until the protostar (n~10²⁰ cm⁻³, r~1R_{sun}) formation

Velusamy et al. 2007

Coupling between the magnetic field and neutral gas (weakly-ionized plasma)

- > Low density (n<10¹² cm⁻³): Low ionization rate, but well-coupled due to $\tau_{\rm ff} > \tau_{\rm col}$
- Moderate density (10¹²cm⁻³<n < 10¹⁶cm⁻³): Ionization rate decreases as density increases ⇒ Dissipation of **B** by Ohmic dissipation
- High density (n>10¹⁶ cm⁻³): Some metals are ionized, Well-coupled

Initial Settings

Gas sphere in hydrostatic equilibrium

Critical Bonner-Ebert Sphere
 + Rotation + Magnetic Field

$\rho(r) = \begin{cases} \rho_0 \varrho_{\rm BE}(r/a) \\ \rho_0 \varrho_{\rm BE}(R_c/a) \end{cases}$	for $r < R_c$ for $r \ge R_c$	
$a = c_s \left(\frac{f}{4\pi G\rho_0}\right)^{1/2},$		

- Magnetic field lines are parallel to the rotation axis: *B*//*Ω*
- \square Parameters: α , ω
- > $\alpha = B_c^2/(4\pi\rho c_s^2)$:magnetic field strength (ratio of the magnetic to thermal pressure)
- > $\omega = \Omega/(4\pi G\rho)^{1/2}$: angular velocity normalized by freefall timescale
- $\square (B_{x,0}, B_{y,0}, B_{z,0}) = (0, 0, (\alpha 4 \pi \rho c_s^2)^{1/2})$ $\square (\Omega_{x,0}, \Omega_{y,0}, \Omega_{z,0}) = (0, 0, \omega (4 \pi G \rho)^{1/2})$

- Initial Value
- ➤Number density : n=10⁴ cm⁻³
- ➤Temperature:T=10K
- ≻Cloud scale: 4.6x10⁴ AU
- ►Mass: M_{tot} =14 Msun

Numerical Methods

3D Resistive MHD Nested Grid Method

- Grid size: 128 x 128 x 64 (z-mirror sym.)
- Grid level: I_{max}=31 (I : Grid Level)
- **Total grid number:** 128 x 128 x 64 x 31
- For uniform grid, (128x2x10³⁰)x(128x2x10³⁰)x(64x2x10³⁰) ~ (10³⁰)³ cells are necessary > Grid generation: Jeans Condition

I =1:
$$L_{box} = 4 \text{ pc}$$
, $n = 10^3 \text{ cm}^{-3}$ (initial)
I =31: $L_{box} = 0.2 \text{ R}_{sun}$, $n = 10^{23} \text{ cm}^{-3}$ (final)

10 orders of magnitude in spatial scale 20 orders of magnitude in density contrast

Example of Nested Grid

Cloud Evolution from Molecular Cloud to Protostar

Dissipation by the Ohmic Dissipation

Evolution of the Magnetic field at center of the cloud

- $n = -5x10^{11} \text{ cm}^{-3}$:First core formation, *B* field begins to be twisted
- ♦ 10¹¹ cm⁻³ <n< 10¹³ cm⁻³ : B field strongly twisted, outflow appears
- ◆ 10¹³ cm⁻³ <n< 10¹⁶ cm⁻³ : B Field is dissipated by the Ohmic dissipation (Br, Bφ)
 ⇒ The magnetic field lines are uncoiled (Bz becomes major component)
- ◆ 10¹⁶ cm⁻³ <n< 10²⁰ cm⁻³ : Second collapse, B is coupled with the neutral gas, amplified again
- $n > 10^{20} \, cm^{-3}$: Protostar formation, B_r , B_{ϕ} increase again

Outflow and Jet Driving Phase

High-velocity flow from Protostar Low-velocity Flow from First core - 🗆 × 000 times of the central area close-up 360 AU 0.35 AU v_{outflow}~ 5 km/s v_{Jet}~50 km/s

➢ First Core : n~10¹¹ cm⁻³, r~10-100 AU

> Protostar: n~10²¹ cm⁻³, r~0.01 AU

Adiabatic core (first and second core) formation $\Rightarrow \tau_{rot} < \tau_{collapse}$ \Rightarrow Magnetic field lines are twisted \Rightarrow Flow driving

Each core has different scale and different magnetic field strength

First Core does not experience the Ohmic dissipation: **Strong field**, hourglass

protostar

v~50 km/s

Protostar experiences the Ohmic dissipation: Weak field, straight lines

Collimation and Flow Speed

> Different degrees of the collimation are caused by different driving mechanisms

Properties of Outflow and Jet

> Our simulation could naturally reproduce properties of outflows and jets

	Driver	Speed	collimation	Mechanism	Configuration of B
Outflow	First core	Slow (~10km/s)	Δ	Disk Wind	Hourglass
Jet	Protostar	High (~100km/s)	Ø	Mag. pressure	Straight

>Outflow is directly driven from the first core (not entrainmented by jet)

> The differences between outflow and jet is caused by different strength of magnetic field, and depth of gravitational potential

first core

Summary

□ To avoid artificial settings around the protostar, we calculated the cloud evolution from the molecular cloud (n=10⁴ cm⁻³) until the protostar formation (n~10²³ cm⁻³)

□We only assumed the initial molecular cloud (n=10⁴ cm⁻³)

So, we did not impose artificial settings around the protostar.

artificial configuration of *B* lines, artificial strength of *B*, artificial accretion rate
artificial density profile, artificial disk properties,...

Our calculation shows:

- >Two distinct flows: Outflow from the first core, Jet from the protostar
 - ✓Outflow: wide opening angle and slow speed
 - ✓ Jet: well-collimated structure and high speed
- Magnetic (Ohmic) dissipation is very important to determine flow properties : it influences the collimation
- Different speeds cause by different gravitational potential of each core