

Patrick Hartigan

Department of Physics and Astronomy Rice University

Jetset, Rhodes July 10, 2008

Magnetic Fields in Stellar Jets

OVERVIEW OF TALK

I. PHYSICS BEHIND FIELD MEASUREMENTS

- Zeeman Splitting
- Synchrotron Emission
- Emission Lines in Shocked Cooling Zones

II. IMPLICATIONS OF PULSED MAGNETIC FLOW

Numerical Models

III. INFORMATION ABOUT JET LAUNCHING RADII

• LVC HVC Measurements

IV. A FUN SURPRISE (Only sort of related to B fields)

What field tracers to use - roughly, how strong is the field?

So, V_A <~ 30 km/s, n_{preshock} ~ 100 cm⁻³, So B_{preshock} < 140 μ G Want tracers sensitive in 10 μ G – 10 mG regime

Non-relativistic Hamiltonian Magnetic Perturbation Terms

Electron in Atom, Nonrelativistic Quantum, No Spin

$$\mathbf{H} = \frac{(\mathbf{p} - e\mathbf{A}/c)^2}{2m} + \text{electrostatic terms (e-nucleus, e-e)}$$
Uniform external $\mathbf{B} = \mathbf{B}_{\circ} \hat{\mathbf{z}} \longrightarrow \mathbf{A} = -\frac{1}{2}\mathbf{r} \times \mathbf{B}$

$$\mathbf{H} = \frac{p^2}{2m} + \frac{e}{4mc} \left[\mathbf{p} \cdot (\mathbf{r} \times \mathbf{B}) + (\mathbf{r} \times \mathbf{B}) \cdot \mathbf{p} \right] + \frac{e^2}{8mc^2} (\mathbf{r} \times \mathbf{B})^2 + \text{es-terms}$$

$$= \frac{p^2}{2m} + \frac{e}{4mc} \left[\mathbf{B} \cdot (\mathbf{p} \times \mathbf{r}) + (\mathbf{p} \times \mathbf{r}) \cdot \mathbf{B} \right] + \frac{e^2}{8mc^2} \left[r^2 B^2 - (\mathbf{r} \cdot \mathbf{B})^2 \right]$$

$$+ \text{ es- terms}$$

$$= \text{es-terms} + \frac{p^{2}}{2m} \qquad -\frac{e}{2mc} \mathbf{L} \cdot \mathbf{B} \\ \text{H}_{\circ} \qquad \qquad \text{H}_{1} \qquad \qquad + \frac{e^{2}B^{2}}{8mc^{2}} \left(x^{2} + y^{2}\right) \\ \text{paramagnetic} \qquad \qquad \text{H}_{2} \qquad \qquad \text{H}_{1} >> \text{H}_{2} \\ \text{diamagnetic} \qquad \qquad \text{H}_{1} >> \text{H}_{2}$$

Bohr Magneton, Spin Gyromagnetic ratio

Consider H_1

 $\mathbf{L} \cdot \mathbf{B} = \mathbf{L} \cdot \mathbf{B}_{\circ} \hat{\mathbf{z}} = \mathbf{L}_{Z} \mathbf{B}_{\circ} = m_{l} \hbar B_{\circ}$ $\mathbf{H}_{1} = -\frac{e\hbar}{2mc} B_{\circ} m_{l} = -\mu_{B} B_{\circ} m_{l}$ where μ_{B} = Bohr Magneton $= \frac{e\hbar}{2mc} = 9.26 \times 10^{-21}$ cgs. $\mathbf{H}_{1} = -\frac{\mu_{B}}{\hbar} \mathbf{L} \cdot \mathbf{B}$ For spin, $\overrightarrow{\mu_{S}} = -\mathbf{g}_{S} \mathbf{s} \mu_{B}$, $\mathbf{g}_{S} = 2.0023 \sim 2$. So, $\overrightarrow{\mu_{i}} = -\mu_{B} (\mathbf{l}_{i} + 2\mathbf{s}_{i})$ for each electron

Magnetic Perturbation in L-S Coupling

For L-S coupling, ${\bf J}$ specifies the quantum state

$$\begin{aligned} \mathbf{H}_{1} &= -\frac{\mu_{B}}{\hbar} \mathbf{g}_{J} \mathbf{J} \cdot \mathbf{B} \; ; \; \mathbf{g}_{J} = \frac{\mathbf{L} \cdot \mathbf{J}}{J^{2}} + \frac{2\mathbf{S} \cdot \mathbf{J}}{J^{2}} \\ \mathbf{L} &= \mathbf{J} - \mathbf{S} \\ \mathbf{S} \cdot \mathbf{J} &= \frac{1}{2} \left(J^{2} + S^{2} - L^{2} \right) = \frac{\hbar^{2}}{2} \left[j(j+1) - l(l+1) + s(s+1) \right] \\ \mathbf{L} \cdot \mathbf{J} &= \frac{1}{2} \left(J^{2} - S^{2} + L^{2} \right) = \frac{\hbar^{2}}{2} \left[j(j+1) + l(l+1) - s(s+1) \right] \\ \end{aligned}$$
With $\mathbf{g}_{S} = 2 \text{ we get}$

$$\mathbf{H}_{1} = \mu_{B} B_{\circ} m_{j} \left[\frac{3j(j+1) - l(l+1) + s(s+1)}{2j(j+1)} \right] \sim \mu_{B} \mathbf{B}_{\circ}$$

Energy Level Pattern, Energy Splitting in Velocity Units

- Zeeman broadening often overwhelmed by Doppler
- Long wavelengths are better

Polarization

Strategies

- Subtract: LCP RCP, look for signature (gives B_{\parallel})
- Compare broadening of magnetically sensitive lines to magnetically insensitive lines
- Resolve individual components and get B from the split

Zeeman Examples

BP Tau BP Tau He I 5876 Solid: LCP Dashed: RCP B₁ ~ 2.5 +/- 0.1 kG

21 cm Circular Polarization in Orion A $B_{\parallel} = 174 \ \mu\text{G}$ +/- 20 μG (0.012 km/s) (Troland, Heiles and Goss 1989 ApJ 337, 342)

Optical Ca II H&K circular polarization +/- 30 G for Ae/Be stars with VLT (Hubrig etal 2006 A&A 446, 1089)

NIR Line Broadening on TTS Solid: B = 2.5 kG; Dashed: B=0 Johns-Krull et al 2004, ApJ 617, 1204

Johns-Krull et al 1999, ApJ 510, L41

Wavelength Offset (Å)

Zeeman Examples: Masers

OH Masers in Massive Star Region W3 B ~ 5mG Fish et al 2006, ApJ 647, 418

Physical Reason Why Accelerated Charges Radiate, Why the Radiation Pattern is $\sin\theta$ and Why it is Polarized

Cyclotron Spectra and Harmonics, Beaming

Power P(ω) = F(ω,γ,α)B^{(p+1)/2}

p-1=2s s=spectral index

Linear and Circular Polarization of Synchrotron Emission

Granlar Polarization Synchrotron -> none/little emitting cone The . 2 AA back front emit front here 7 back amits emit here hope lined up w/cone on top of come below cone elliptical polarized elliptical polarized 100% Inearly polaned RHCP component, LHCP CP cancels for small ranges of "viewing \$

Circular Polarization of Gyrosynchrotron Emission

Gyrosynchrotron Example

T Tau, 6 cm continuum Red: RCP, Black: LCP Offset from star +/- 10 AU B ~ Gauss Ray et al 1997, Nature 385, 415

I (c) Cooling Zones Behind A Radiative Shock

Layer of Collisionally Excited H

Dopita 1978 ApJS 37, 111 Raymond 1979 ApJS 39, 1

Example of Using Cooling Zone Observations to Measure Component of B Parallel to Shock Front

TABLE 7						
EFFECT OF MAGNETIC FIELDS ON LINE RATIOS						
Parameter	Large Field Model Small Field Mod					
$B_{\parallel} (\mu G)^{a} \dots$	1000	1				
$n_0(\text{cm}^{-3})$	1.0×10^{5}	1.08×10^{4}				
V_{s} (km s ⁻¹)	50	30				
[S II] λ6716/[S II] λ6731	1.11	1.11				
[O I] λ6300/Hα	0.97	1.1				
[S II] λλ6723/Hα	2.4	2.7				
[N 1] λλ5200/Hβ	2.2	2.5				
[N II] $\lambda 6583/[O I] \lambda 6300$	0.036	0.053				
$N_e (\text{cm}^{-3})$	390	390				
$F_{(HB)}$ (ergs cm ⁻² s ⁻¹)	4.4×10^{-4}	4.2×10^{-5}				
$\langle C \rangle^{\mathfrak{b}}$	3.0	19				
⟨ <i>I</i> ⟩ ^b	0.013	0.019				
⟨N⟩ (cm ⁻³) ^b	1.7×10^{4}	4.4×10^{3}				

^a Component of the preshock magnetic field that lies parallel to the surface of the shock.

^b As defined in Tables 1-6.

Line ratios nearly degenerate High (B,V_S,n) ~ Low (B,V_S,n) Fluxes break degeneracy Hartigan et al 1994 ApJ 436 125

Example of Using Cooling Zone Observations to Measure B

Morse et al 1992, 1993

- Use [O III] to get V_S
- H α flux to get n_{preshock}
- Measure N_e
 Gives B_{preshock} ~ 15μG for n_{preshock} ~ 65 cm⁻³

Compression $(N_e/N_0) \sim 5$ times lower than if B =0 So, B ~ 1G @ 10 AU, ~ 1mG in dense knots, ~ 20 μ G in preshock gas

II. Implications of Pulsed Magnetic Flow

Hartigan, Frank, Varniere & Blackman 2007 ApJ

Goals:

Understand how velocity variable flows behave when fields are present

• What might we learn about fields closer to the star?

Note \rightarrow All of this is for R >> R_A

- 2.5 D AstroBEAR simulation
- Random velocity pulses V = 200 + fA f = -1 to 1; A=10% to 50%
- Conical magnetized flow, opening angle 5-degrees
- B-phi embedded in jet such that V_A = 35 km/s in first cell
- Jet/Ambient density ratio = 7.5
- Follow ~ 35 pulses, bow shock propagates off grid

Why conical?

The jet width increases linearly with distance

so n ~ $(r+r_0)^{-2}$

... but the edges of the jet do not project to a point P. Hartigan (Rice), A. Frank, P. Varniere, E. Blackman (Rochester), 2007 ApJ

Distance from source

21/34 Pulsed Magnetic Flow Models

\leftarrow Distance along axis of jet \rightarrow

	Table 1.			
	Average Jet Parameters			
Distance From Star (AU)	$\mathbf{Arcseconds}^a$	n $(\mathrm{cm}^{-3})^b$	${ m B}_{\perp}$	$\mathbf{V}_A~(\mathrm{km~s^{-1}})^c$
10	0.02	2.5×10^6	$82 \mathrm{mG}$	113
30	0.06	$1.5 imes 10^6$	$53 \mathrm{mG}$	94
100	0.2	$4.5 imes 10^5$	$19 \mathrm{mG}$	62
300	0.6	$8.8 imes 10^4$	$4.8 \mathrm{~mG}$	35
10^{3}	2.2	10^{4}	$0.75~{\rm mG}$	16
3×10^3	6.5	1.2×10^{3d}	$124 \ \mu G^d$	7.8
10^{4}	22	110^{d}	$16\mu G^d$	3.3
3×10^4	65	12^d	$2.4\mu G^d$	1.5

^aSpatial offset from the star at the distance of the Orion star forming region (460 pc).

^bDensities for a conical flow with a half opening angle of 5 degrees and a base width of 10 AU, taking the density to be 10^4 cm⁻³ at 1000 AU.

^cThe Alfven speed V_A determined from the total density n.

^dValues refer to an average density; densities at large distances are highly influenced by shocks and rarefaction waves, see text.

- B field concentrates into dense blobs, Rarefactions decouple
- Preshock B (in rarefactions) drops with distance 30 km/s perturbations make shocks in jets. B inhibits compression in blobs
- Close to the source B is higher magnetic zone?

Simulation began with $V_A = 35$ km/s and $V_J = 200$ +/- 100 km/s

Will have trouble if V_A gets too high because then velocity perturbations give (longitudinal) magnetic waves rather than shocks

III. Information about Jet Launching Radii

Hirth, Mundt, & Solf 1994, A&A 285, 929 (CW Tau)

SVS 13 (along the jet) B5-IRS 1 (along the jet) Position (arcsec) Position (arcsec) -1 P.A.=159 deg. P.A.=73 deg **SVS 13** HH 34 IRS (perp. to the jet) (along the jet) Position (arcsec) Position (arcsec) -1 greyscale : H21-0 S(1) P.A.=69 deg. P.A.=167 deg. : [FeII] 1.644 µm contour -300 -200100 300 300 -1000 200 -300-200-1000 100 200 VLSR (km s⁻¹) VLSR (km s⁻¹)

Contours: [Fe II] Greyscale: H₂

Takami et al 2006 ApJ 641 357

Finish with some fun stuff

3rd Epoch of HST movies for HH 1 and HH 2

SUMMARY

- B fields are difficult to measure in jets. Several techniques, all have limitations.
- > 1000 AU B ~ 20 μ G in rarefactions, ~ 1 mG in blobs
- B higher closer in, ~ 100 mG (?) aroud 10 AU
- Best scenario: V_A(phi) < ~ 5 V(jet)
- LVC/HVC suggest two launching regions separated by a 'dead' zone where disk wind is not occurring.
- Disk Wind Modelers: Please let observers know what magnetic signal speed you predict at large distances.

Ia. ZEEMAN SPLITTING

$$\vec{\tau} = \mathbf{r} \times \mathbf{F} = \mathbf{r} \times \frac{e\mathbf{v} \times \mathbf{B}}{c} \qquad \langle \vec{\tau} \rangle = -\mu B_{\circ} \sin \theta \mathbf{\hat{x}}$$

$$U = -\int_{\pi/2}^{\theta} \langle \vec{\tau} \rangle \, d\theta = -\mu B_{\circ} \cos \theta = -\vec{\mu} \cdot \mathbf{B}$$

Magnetic Potential Energy: Classical Current Loop

I (b). Synchrotron and Gyrosynchrotron Emission

Retarded Potentials

$$\frac{\int p x chrotrom Emission}{\int 2^{2} V - \frac{1}{c^{2}} \frac{\partial^{2} V}{\partial z^{2}} = -4\pi g}$$

$$\frac{\int^{2} V - \frac{1}{c^{2}} \frac{\partial^{2} V}{\partial z^{2}} = -4\pi J$$

$$\int^{2} A - \frac{1}{c^{2}} \frac{\partial^{2} A}{\partial z^{2}} = -\frac{4\pi J}{c}$$

$$\int \frac{d^{3} v}{dz} \frac{r}{z^{2}} - \frac{r}{z^{2}} \frac{d^{3} v}{z^{2}} = -\frac{4\pi J}{c}$$

$$\int \frac{d^{3} v}{z^{2}} \frac{r}{z^{2}} \frac{r}{z^{2}} \frac{d^{3} v}{z^{2}} \frac{r}{z^{2}} \frac{d^{3} v}{z^{2}} \frac{r}{z^{2}} \frac{d^{3} v}{z^{2}} \frac{r}{z^{2}} \frac{d^{3} v}{z^{2}} \frac{r}{z^{2}} \frac{r}{z^{2}} \frac{d^{3} v}{z^{2}} \frac{r}{z^{2}} \frac{d^{3} v}{z^{2}} \frac{r}{z^{2}} \frac{r}{z^{2}} \frac{d^{3} v}{z^{2}} \frac{r}{z^{2}} \frac{r}{z^{2}} \frac{d^{3} v}{z^{2}} \frac{r}{z^{2}} \frac$$

Larmor's Formula; Gyroradius and Cyclotron frequency

Power
$$P = \int_{4\pi} Sr^2 d\mathcal{I} = \frac{e^2 a^2}{2c^3} \int_{0}^{\pi} \sin^3\theta d\theta = \frac{2}{3} \frac{e^2 a^2}{c^3}$$

Larmor's formula
 $\int_{\pi}^{\pi} \vec{B} \otimes e \frac{\vec{v} \times \vec{B}}{c} = \frac{mv^2}{r} r = gyroradius$
 $\omega_{B} = \frac{e^{B}}{rmc} cyclotron frequency$

Synchrotron Power Law Spectrum

Power law, N(E)de ~ E^Pde E= energy of E -> emitted power P(w) ~ w = w = spectral index Log In 5/2 - p-1 Thick thin logr $\frac{P_{o}|arrization}{percentage} = \frac{P+1}{P+\frac{7}{3}}$ for power law P(w) = const B F(w, Y, d) ~ B^{p+1} for power law function

Errors in HST Proper Motions Small Compared to Differential Motions ...and differential motions agree with shock models

So, $V_A <~ 30$ km/s, $n_{preshock} \sim 100$ cm⁻³, So $B_{preshock} < 140 \ \mu G$ Want tracers sensitive in $10\mu G - 10$ mG regime

Anderson et al 2005, ApJ 630, 945

Solid: 25% of mass Dashed: 50% of mass Dot-dashed: 75% of mass

Terminal Magnetic Mach number ~ 2 X-wind terminal number $\sim 5-6$