IR diagnostic of Class 0/l jets

Osservatorio Astronomico di Roma

Rebeca García López

Brunella Nisini, Jochen Eislöffel, Francesca Bacciotti, Teresa Giannini, Linda Podio, Emma Whelan

OUTLINE

- Introduction
- Kinematics of Class I jets
- Physical properties of Class I jets Electron density (n_e) Mass ejection flux (M_{jet})
 Work in progress

Low mass star formation

Time

Jets from T-Tauri stars First studies: optically visible HH 30 (class II sources) 200 AU Distance ~ 140 pc **High spatial resolution Physical properties:** $\dot{M}_{acc} \sim 10^{-8} M_{\odot}/yr$ $\dot{M}_{iet} \sim 10^{-9} M_{o}/yr$

Jets from class | sourcesLess evolved than T-Tauri jets

High A_v near the source

Do class I and T-Tauri jets form in the same way ?

Physical properties: $\dot{M}_{acc} \sim 10^{-7} M_{o}/yr$ $\dot{M}_{jet} \sim 10^{-8} M_{o}/yr$

Class I jets through NIR

Embedded objects

 $A_k \sim 0.1 A_v$

Trace gas at low excitation

Observations

NIR spectroscopy Instrument: ISAAC@VLT Slit parallel to the jet axis Medium resolution: H ~ 10000 K~8900 **Spatial resolution: 0.148"/pixel** Set of class 0/l jets: HH1, HH34, HH46-47....

Position-Velocity Diagram (PVD)

Y-axis: distance from the source (arcsec)

X-axis: radial velocity with respect to the source (km/s)

V. variation: along the axis

Kinematics Atomic component: [Fell] emission

D=400 pc, 1" = 400 AU

Molecular component: H₂ emission

Garcia Lopez et al. (2008)

• HH34

HVC + LVC

No emission in between

• HH 46-47

Single velocity component

velocity

Physical properties

Physical properties- n_e

Physical properties- Mass flux (M_{jet}) From the [Fell] 1.64µm line luminosity:

 $\dot{\mathbf{M}} = \mu \mathbf{m}_{H} \mathbf{x} (\mathbf{n}_{H} \mathbf{V}) \mathbf{x} \mathbf{v}_{t} / I_{t}$

 m_{H} , proton mass μ =1.24, average atomic weight

n_H, total density

V, emitting volume

v_t, l_t, velocity and length of the knot, projected perpend. to the line of sight

 $n_H V = L([Fell]1.64 \mu m) (hv A_i f_i (Fe^+/Fe) ([Fe]/H))^{-1}$

<u>Assumptions</u>: -Fe⁺/Fe = 1 A_i, f_i, radiative rate and fractional pop. upper level Fe⁺/Fe, onica i Afrecian I m t [Fe]/H, total abundance with respect to hydrogen

-[Fe]/H = $2.8 \ 10^{-5}$ (Asplund et al. 2005) \rightarrow No dust depletion

Physical properties- Mass flux (M_{iet})

Jet, knot	r,	Av	Te	М _{jet} (HVC)	М _{jet} (LVC)
	(")	(mag)	(10 ³ K)	(M _° /yr)	(M _o /yr)
HH34, A6	(-2.6,+0.9)	7.1	7.0	5.2 10-8	6.6 10 ⁻⁹
HH46-47, S	(-3.4,+2.8)	6.6	15.0	2.6 10-8	2.5 10 ⁻⁹

								Ň	je		.c	
		H	H	3	4				0.	01		
	H	H		• <mark>6</mark> •	-4	7			0	.1		

(M_{acc} from Antoniucci et al. 2008)

Work in progress: spectro-astrometry

Work in progress: spectro-astrometry

Conclusions

Kinematics

- Fell : HVC, LVC

- H₂ { HH34: HVC, LVC HH46-47: single v. component

- HH34, HH46-47 : LVC reaches redshift. velocities at 0"

Physical properties

HH34, HH46-47: $n_{e}(LVC) > n_{e}(HVC)$

M_{jet}(HVC) > M_{jet}(LVC)