

Protostellar jets driven by intermediateand high-mass protostars: an evolutionary scenario?

Alessio Caratti o Garatti

Thüringer Landessternwarte Tautenburg

caratti@tls-tautenburg.de

Col: J.Eislöffel (TLS), D.Froebrich (Univ. of Kent), T.Giannini, B.Nisini (INAF-OAR)

www.jetsets.org

Introduction:

- Intermediate- & high-mass jets in context
- Observations of IRAS 20126+4104 jet
- Results
- Discussion:
 - Comparing low-mass & high-mass jets
 - An evolutionary scenario?
- Conclusions

High-mass jets in context

JET Simulations, Experiments and Theories

Massive outflow & jet study is still in its infancy

Observational constraints:

- distance
- clustering
- high extinction
- short MYSO lifetime
- → few HM jets known
- → surveys needed

(see Stecklum's poster!)

→3 spectroscopically studied

→ IRAS 18162-2048 (Davis et al.2004), IRAS 11101-1208 (Gredel 2006), IRAS 20126+4104 (Caratti o Garatti et al. 2008)

Importance:

- insights on high-mass star formation:
 - disc origin or coalescence? higher accretion/ejection rates?

Low- vs high-mass flows

LM jet/outflow characteristics

Morphology:

Collimated & bipolar **Dimension:** few AU–some pc Small precession: $\leq 10^{\circ}$ Velocity: 10-500 km/s **P**_{out}: 10⁻⁵ M_☉/yr M_{out}: 10⁻⁷-10⁻⁶ M_☉/yr **Density:** 10²÷10⁶cm⁻³ **Temperature:** 10²-10⁴K **A**_v: 0–40 mag Line emission: $H\alpha$, [SII], H_2 , [FeII] Time evolution: yes

HM jet/outflow characteristics

JET Simulations, Experiments and Theories

Morphology:

Not well collimated **Dimension:** few AU–few pc Large precession: up to 45° Velocity: 10-? km/s **P**_{out}: 10⁻⁴-10⁻² M_☉/yr M_{out}: 10⁻⁵-10⁻² M_☉/yr 10⁴÷10⁶cm⁻³? Density: Temperature: 10²-10⁴K ? **A_v:** 10–100? mag Line emission: $H\alpha$, [SII], H_2 , [FeII] **Time evolution:** ??

- Beuther & Shepherd 2005

I 20126+4104 jet: Observations

JET Simulations, Experiments and Theories

- IRAS 20126+4104 HMYSO (L_{bol}~10⁴ L_☉)
- $\dot{M}_{acc} \sim 2 \times 10^{-3} M_{\odot} \text{ yr}^{-1}$
- Distance 1.7 Kpc. Jet dim. ~ 1pc
- Precessing jet ~37°
- Imaging :
 - H₂,K NICS@TNG (5.6'x5.6', R=0.25")
 - Fell,H UIST@UKIRT (3.4'x3.4', R=0.12")
 - H₂, Br_v CIAO@Subaru (35"x35", R=22mas)
- Spectroscopy :
 - 0.9-2.5 μm NICS@TNG (R=500)
 - 2.12 μm CGS4@UKIRT (R=18500)
 - 2.38-197 μ m SWS/LWS@ISO (R=1000 / 200)

Results: Imaging

- Imaging :
 - Faint Fell emission only close to the Source
 - The jet is mostly molecular!

In addition to the large scale precession, a smallscale one is observed

Radial velocities

- V_{rad} : -14 km/s ÷ -42(blue), -8 ÷ 47 km/s (red)

- Higher velocities found in the outer knots
- FWZI: from ~140 km/s (inner) to ~80 km/s (outer knots) \rightarrow incl. changes?
- Spatial velocity: between 50 and 80 km/s

Physical Parameters from NIR

JET Simulations, Experiments and Theories

- $A_V = 6 \div 10 \text{ mag}, N_{H2} = 10^{18} \div 10^{19} \text{ cm}^{-2}$
- Single T = 2000÷2500 K for all knots, C has 2 comp. T=2050 & 5200 K
 - no evidence of fluorescent excitation in ro-vibrational diagrams
- L(H₂) derived combining A_v, T, and flux 2.12 (imaging) (~3.6 L_o)
- Mass flux rates derived combining N_{H2} and velocity
 - M: 10⁻⁸÷10⁻⁶ M_☉/yr highest value in knot C

Caratti o Garatti et al. 2008

•

Does the H₂ jet power the flow?

JET Simulations, Experiments and Theories

Table 6. Compariso	on between	H_2	and	CO	physical	properties	of
IRAS 20126+4104 fl	ow.	П	r (Sho			

• Observed in low-mass YSOs

Observed in studied HM jets

	<u> </u>				
Parameter	H_2	CO^{ρ}			
Mass (M_{\odot})	0.5	53			
v_{red} (km s ⁻¹)	(-8, 47)				
v_{blue} (km s ⁻¹)	(-14, -42)				
$\tau_{d} (10^4 {\rm yr})$	1.3	6.4			
$\dot{M} (10^{-3} M_{\odot} \text{ yr})$	0.75	0.81			
$E_{k}(10^{46} \text{ ergs})$	3	5.1			
$P(M_{\odot} \text{ km s}^{-1})$	40	403			
\dot{P} (10 ⁻³ M_{\odot} yr ⁻¹ km s ⁻¹)	3	6			

Notes: " From Shepherd et al. (2000).

 Comparison between H₂ and CO literature data (Shepherd et al. 2000)

– excellent agreement: the jet can power the outflow!

Caratti o Garatti et al. 2008

A multiple system?

Large-scale precession: modelled by Cesaroni et al. (2005) t= 64000 yr, 37° prec. angle presence of a smaller companion

- Small-scale precession:
 - simple precessing jet model:

$$\begin{pmatrix} \alpha \\ \delta \end{pmatrix} = \begin{pmatrix} \alpha_0 \\ \delta_0 \end{pmatrix} + \begin{pmatrix} \cos(\psi) & -\sin(\psi) \\ \sin(\psi) & \cos(\psi) \end{pmatrix} \times \begin{pmatrix} \phi l \sin(2\pi l/\lambda + \chi_0) \\ l \end{pmatrix}$$

- t=11000 yr (D=1.7kpc, v =80km/s)
- 7.6° precession angle
- Combination of the two
 precessions
- Is it a multiple system?

Comparing high- & low-mass jets

JET Simulations, Experiments and Theories

- L_{H2} vs L_{bol} for I20126 as for low-mass jets!
- What about:
 - I18162-2048 (Davis et al.2004), I11101-1208 (Gredel 2006), I05358+3543 (Puga et al.2000), I16547-4247(Brooks et al.2003).
 - but cold component not studied!

Comparisons:

- Spectroscopically low- & high-mass jets are similar (no fluorescence, HH, H₂ jets)
- Similar velocities & physical conditions
- Can drive the outflow

- involved energies are larger, higher ejection rates \rightarrow higher accr. rates
- almost all known high-mass jets are precessing wider prec. angles → multiple systems, dynamical interactions!!

Caratti o Garatti et al. 2008

JET Simulations, Experiments and Theories

Conclusions

High mass protostellar jets:

- Need for more surveys/observations
- HM similar to LM jets but larger energies, higher M_{out}
- Large precession angles \rightarrow dynamical interactions

IRAS20126+4104:

- The jet is mostly molecular
- Velocities, extinction, and temperatures as in LM jets, higher column density
- Cold H₂ component strongly contributes to L(H₂) and M
 _{out}, larger than in low-mass jets

JET Simulations, Experiments and Theories

