THE COMPLEX MORPHOLOGY OF THE X-RAY AND OPTICAL EMISSION FROM HH 154: THE PULSED JET SCENARIO

R. Bonito

S. Orlando, INAF - Osservatorio Astronomico di Palermo, IT G. Peres, Dip.S.F.A., Universita' di Palermo, IT F. Favata, ESA, Community Coordination and Planning Office, Paris J. Eisloffel, Thuringer Landessternwarte, Tautenburg

Outline

#First observations of the X-ray emission from protostellar jets # First hydrodynamic model and synthesis of the X-ray emission from protostellar jets # 2005 X-ray and optical observations of the emission from HH 154 # Modeling X-ray emission from a pulsed jet

Herbig - Haro (HH) objects

HH objects: shocks formed at the interaction front between a supersonic jet and the surrounding medium

(Hartigan)

$$T_{\rm psh} = \frac{\gamma - 1}{(\gamma + 1)^2} \left(\frac{mv_{\rm sh}^2}{k_{\rm B}}\right)$$

X-ray emission discovered from HH objects for a total of 6 since 2000: the first 2 (in 2000):

- Pravdo et al. (2001)
- Raga et al. (2002): analytic model

X-ray emitting protostellar jets

- Observed with both XMM and Chandra: 2000, 2001, 2005
- Strongly absorbed stellar corona: A_v (star/jet)= (150/7) mag
- The nearest most luminous jet: > 60 cnts in ~ 100 ks (single exposure)

object	L _x	Т	N _H	d	References
	[10 ²⁹ erg s ⁻¹]	[MK]	[10 ²² cm ⁻²]	[pc]	
HH 2	5.2	2.7	< 0.09	480	Pravdo et al. (2001)
HH 154	3.0	2.0-7.0	1.40 🤇	140	Favata et al. (2002)(2006)
					Bally et al. (2003)
HH 80/81	450	1.5	0.44	1700	Pravdo et al. (2004)
HH 168	1.1	5.8	0.40	730	Pravdo & Tsuboi (2005)
HH 210	10	0.8-3.8	0.80	450	Grosso et al. (2006)
DG Tau	0.12	3.4	0.3	140	Guedel et al. (2008)

Bonito et al. (2007)

Observations

observed physical parameters

synthesis and comparison with observations

Initial conditions (model)

predictions

Model's

numerical simulations

exploration of the parameters space

Spectral synthesis (1)

Spectral synthesis (2)

Exploration of the parameters space: continuous jet model

varying n_j, initial density of the jet varying r_j , initial radius of the jet

$M = v_j/c_a$ = Mach number # $v = n_a/n_j$ = density ratio

Bonito et al. (2007)

Continuous jet model

model	ν	M	v_{j}	$n_{\rm a}$	$T_{\rm a}$
			$\rm [km~s^{-1}]$	$[\mathrm{cm}^{-3}]$	$[10^4~{\rm K}]$
light	10	300	1400	5000	0.1

Bonito et al. (2004; 2007)

Predicts detectable proper motion (500 km/s) blob X = point-like due to the strong N_{H} proved by our model: first X-ray synthesis from protostellar jets

X-ray emission from a light jet (XMM-Newton/EPIC-pn) Model

(Bonito et al. 2004): count rate = 1.2 cnts/ks $T = (3.4 \pm 1.2) \times 10^{6} K$ Fx = 1.4×10⁻¹³ erg/cm²/s

Observations (Favata et al. 2002): count rate = 1.0 cnts/ks $T = (4.0 \pm 2.5) \times 10^6$ K $Fx = 1.3 \times 10^{-13}$ erg/cm²/s

X-ray emission from a light jet (XMM-Newton/EPIC-pn) Model

Shocks from supersonic jets: reproduce in a natural way the observed L_X and $T_{best-fit}$ prediction: $v_{sh} \sim 500$ km/s

Natural candidate to explain the physical mechanism of the X-ray emission from protostellar jets Model (Bonito et al. 2004): count rate = 1.2 cnts/ks T = (3.4 ± 1.2)×10⁶K Fx = 1.4×10⁻¹³ erg/cm²/s

Observations (Favata et al. 2002): count rate = 1.0 cnts/ks T = $(4.0 \pm 2.5) \times 10^6$ K Fx = 1.3×10^{-13} erg/cm²/s

Morphological evolution in X-rays

- Complex morphology: two components
- 1) point-like, stationary (over 4 yr)
- 2) elongated
- Lengthening of X-ray source (component 2) consistent with proper motion predicted by the model detected for the first (and only) time
- Speed consistent with model's results: 460 km/s Favata, Bonito, Micela, Fridlund, Orlando, Sciortino, Peres (2006)

to verify the model

X-ray vs. optical emission

Open questions

First model: does not explain some observed features

New model to explain:

X-ray emission from the base of the jet (HH 154, DG Tau)
Complex morphology (the first and only case = HH 154)
Variability (the first and only case = HH 154)

(Guedel's talk)

common feature for X-ray emitting HH jets

- Basic physics = continuous jet
- "New" model: v(t)

(previously used for optical knots; related to episodic accretion phoenomena)

Exploration of the parameters space: M, v, n_j, v(t), ...

Bonito et al. (2008) in preparation 600 AU

Few blobs at high speed
Most of the blobs at low speed

Self-interaction (Eisloffel's talk; poster De Colle & Caratti o Garatti)

Bonito et al. (2008) in preparation

realistic: 100 cnts

Bonito et al. (2008) in prep.

X-ray from the base of the jet
Complex morphology
Variability
Size of the X-ray source

Bonito et al. (2008) in prep.

Conclusions

- X-ray from the base of the jet
- **Complex** morphology
- Variability
- **♯** T ~ 10⁶ K
- \ddagger L_X ~ (10²⁸ 10³¹) erg/s
- \blacksquare v_{sh} ~ 500 km/s

(*) New features 2005

- First simple model continuous jet: reproduces in a natural way the X-ray emission (T, L_X, v_{sh}) does not explain (*)
- "New" model to explain (*): v(t)
- Exploration of the parameter space: M, v, n_j, v(t), ...
- Preliminary results:

(*) + size in nice agreement with HH 154 promising model: work in progress