Jets from Young Stars

John Bally

Center for Astrobiology Center for Astrophysics and Space Astronomy Department of Astrophysical and Planetary Sciences University of Colorado, Boulder

HH 212 H₂ (Mc Caughrean & Zinnecker, VLT)

Why Study Jets from Young Stars?

- Jets & Herbig-Haro Objects: They are beautiful!
- Jet Physics:
 - Launch, collimation, shocks, variations
- Probes of Star Formation:
 - Symmetries (S, Z,C) => precession, motion, dynamics
- **Probes of ISM:** Side winds, ionization, chemical state, etc.
- Impacts:

Feedback / Self-regulation of star formation Turbulence generation / Cloud disruption

• Proximity:

Closest, most abundant jets in astrophysics

Lessons for all classes of astrophysical collimated flow
 Accretion + Rotation + Magnetic Fields => JETS

Outline:

- Classical' Herbig Haro Objects / Molecular outflows Rendered visible by shocks
- Irradiated Jets Rendered visible by ionnization
- Symmetries
 S, Z-shaped => precession, companions, dynamics
- Explosions Orion OMC1, NGC 7129, G24.26+0.15
- Launch & Collimation Disk- and X-winds, hoop stress, magnetic towers
- Isolated vs. cluster environments

HH 46/47: Ηα [SII] [01]

Spitzer IRAC:

3 – 8 µm

HH 46/47 (Hartigan et al. 05, AJ BR06)

HH 46/47 (Hartigan et al. 05, AJ BR06)

L1551 (BR06)

HH 30 (HST)

X-ray source ~0.5" from IRS5

Jets from Young Stellar Objects (YSOs)

• Tracers: 10⁶ K plasma X-ray Ha, [SII], [NII], [OI], [OIII] visual [FeII], H, infrared CO, HCO⁺, SiO mm free-free, non-thermal, masers cm Manifestations of outflows: Visual jets, micro-jets (jet beam) Herbig-Haro objects & NIR (H₂) shocks **Molecular outflows (swept-up/entrained)** • dM/dt decrease with evolutionary stage Class 0: $> 10^{-5}$ Solar masses/year Class I: 10⁻⁶ Solar masses/year

Class II/III: 10⁻⁷ 10⁻⁹ Solar masses/year

• Velocity Increase with evolutionary stage

HST 1997 - 1994

HST 1997 - 1994

HH 1 jet

HST 1997 - 1994

HST 1997 - 1994

HH 2: Small scale chaotic structure (10² - 10⁴ AU)

HST / WFPC2 1994 (Bally et al. 2000; BR06)

HH 2: Small scale chaotic structure (10² - 10⁴ AU)

HST / WFPC2 1997 (Bally et al. 2000; BR06)

Irradiated Jets

- Nearby OB stars photo-evaoprate cores

 σ Ori (HH 444, 445, 446); Orion Nebula (Bally 06)
- Asymmetries:
 - **Brighter jet slow**
 - Mass loading of fast beam
 - Fainter jet fast
- Lyman continuum:
 - determine n, V, P, E
 - independent of nonlinear shock physics
- Irradiated micro-jets from Orions proplyds $dM/dt \sim 10^{-9} M_o$ low V (< 100 km/s)

HH 444/445 Irradiated jets: σ Ori

Reipurth et al 97 Andrews et al. 04

UV photo-ablation of disks & planet formation:

Smith, Bally, Licht, Walawender 05

LkHa 312/ 313 Ha **[SII]** B. Reipurth / Subaru

1

H

HH 514 micro-jet in Orion: Hα, [HII] (HST/STIS)

LL Orionis: wind-wind collision fronts – jet driven!

Irradiated jets in η Car (Tr 14): ACS: HST

Miesch & Bally (94); BR06

IRAS 03235+3004

Ha, [SII] Walawender, Bally, Reipurth (06) Spitzer/IRAC Jorgensen et. (06)

NGC 1333

HH 111: Ha, [SII]

A flow - flow collision HH 270 => HH 110, IRAS 05486+0255 flow Ha, [SII]

Ha, [SII], 4.5 μm (IRAC)

Ha, [SII], 4.5 μm (IRAC)

Giant Outflows

- Symmetries:
 - C-shaped: ejection of star, wind interactions S-shaped: outfow orientation change
- Fossil record of Mass Loss (accretion) history
- Source of cloud turbulence
- Chemical Rejuvenation, CI, C⁺ in ICM (inter-core medium)
- Origin of Cloud Internal Structure (shells, holes: cf. Circinus) Structure + UV => Turbulence
- Major eruptions of YSO every few thousand years ejecta decelerates, blows out of cores
- Non-linear Evolution of Instabilities: cooling => structure

HH 34 parsec-scale flow

Orion A: - Outflows up to 30 pc long !

HH529

HH269

HH 202

OMC1

OMC1-S

Orion Nebula

Zapata et al. (2005)

CO jets in OMC-1S

Zapata et al. (2006)

SiO Jets in OMC-1S

Acceleration & Collimation

- dM/dt increases as L^{0.8}
- V increases as L^{0.2}
- **Acceleration Mechanisms:**
 - Radiation pressure ? NO L/c too low
 - Thermal pressure gradient? NO
 - MHD YES!

Uchida-Shibata, Lovelace- helical torsion, impulsivePudritz-Norman disk wind - advected B,steadyShu X-wind- stellar dynamo, steady

- Dynamical decay; release of gravitational potential (Orion)
- **Collimation:**
 - Magnetic hoop stress
 - Ambient density gradient
 - Ram-pressure of infalling envelope

$0.5 - 2.2 \ \mu m$

10⁴ AU

 $10^4 \, \mathrm{AU}$

Orion BN/KL H₂ fingers

 $E \sim 10^{48} \text{ erg}$

Dynamical Decay of Sub-cluster of massive stars

~ 500 years ago

(N. Cuningham 2006 PhD thesis)

2.12 μm H₂ (blue) 11.7 μm (orange)

Smith et al. (2005)

+

Cunningham (2008)

Gemini N Laser AO [FeII] H₂

Scott Fischer (Gemini Observatory)

High-velocity stars: I, BN, n (Gomez et al. 05,08)

Cepheus A J, H, K_s

Cepheus A: J, K_s , H_2

Powerful outflows from luminous YSOs

Cepheus A: Ha [S II] H2

Ceph A

Cunningham, Moeckel, & Bally

Dec (J2000)

Cep A precessing jet: $P \sim 2 \ge 10^3 \text{ yr}$? Cunningham, Moeckel, & Bally

Nickolas Moeckel (2006) SPH: Massive star capture-formed binary: Disk orientation change

What Next ?

• Calorimetry

- Mass, energy, momentum in flows Sub-mm, mm, FIR spectroscopy / mapping ALMA, SOFIA
- Which Launch & Collimation Mechanism dominates?
 - Disk winds? X-winds? Magnetic towers ? Other ?
 - Hoop stress ? Ram P?
 - LGS + AO on 8 40 meter telescopes Gemini, VLT, VLT-I, ELTs
- Measure & Map Magnetic Fields
 Polarimetry, Zeeman integral field spectroscopy
- Angular Momentum & Vorticity Transport
 - Do Jets Rotate ?

1 to 100 mas resolution; interferometry

Impacts on ISM & Feedback

Spectroscopy 1 to 1,000 μmHerschel, SOFIA, JWST

High dynamic range numerical MHD simulations
 Supercomputing

- Jets + wide angle winds
 - Turbulence generation / cloud disruption
 - Ionization / cloud chemical rejuvenation
- MHD launch /collimation?
 - Repetitive accretion events & Uchida-Shibata bursts
 - Advected B / disk winds
 - Dynamo generated B / X-winds
- Jet symmetries:
 - C-shaped, S-shaped, Z-shaped
 - Dynamical interactions
- Variability
 - dM/dt
 - V
 - Orientation
 - Degree of collimation

Flow Properties

Parameter	(M<5 Solar)	(M>5 Solar)	<u>unit</u>
• Wind/jet velocity	100 - 1,000	100 - 1,000	km/s
• dM/dt	10 ⁻⁵ to 10 ⁻⁹	10 ⁻⁵ to 10 ⁻²	M _o yr ⁻¹
• M (H ₂)	0.001 to 10	1 to 3,000	$\mathbf{M}_{\mathbf{o}}$
• τ	10 ⁴ (Class 0) 10 ⁵ (Class I) 10 ⁶ (> Class II)	10 ⁴ to 10 ⁵	yr yr
• Size:	10° (>Class II) 1 to 10	1 to 20	yr pc
• E	10 ⁴³ to 10 ⁴⁷	10 ⁴⁶ to 10 ⁵⁰	erg
• L _{mech}	10 ⁻⁰ to 10 ⁻³	10^{-1} to 10^{3}	L _o

Kaifu et al. (00); Underhill et a (01)

OMC1 (Shuping et al. 2004)

OMC1 SiO J=1-0 (Greenhill et al. 2004)

OMC1 SiO J=1-0 & 7mm continuum (Greenhill et al. 2004)

OMC1 'SiO J=1-0 (Greenhill et al. 2004)

Orbit Decay: Massive stars orbiting in r⁻² sphere of gas + stars

Nick Moeckel PhD Thesis (CU Boulder, in preparation)